

IMD World Digital Competitiveness Ranking 2025

Reconfiguring digital strategies
amid trade fragmentation

Preface

November 2025

IMD World Digital Competitiveness Ranking 2025

Copyright © 2025
IMD – International Institute for Management Development
23, Ch. de Bellerive
P.O. Box 915
CH-1001 Lausanne
Switzerland

e-mail: wccinfo@imd.org
Internet: www.imd.org/wcc

Choose the product
that meets your needs

Visit our eShop:
www.wcceshop.org

All rights reserved. No part of this publication may be transmitted in any form or by any means, including photocopying and recording, or by any information storage and retrieval system. Nor may any part of this publication be included as a reference in any other work without authorization. IMD, IMD REAL LEARNING, REAL IMPACT, and IMD WORLD COMPETITIVENESS YEARBOOK are trademarks of IMD – International Institute for Management Development

The IMD World Competitiveness Center has long played a role in improving nations' abilities to generate sustainable value and improve the quality of life for its citizens, through in-depth data and analysis.

In 2017, we bolstered our ability to do this by creating a digital ranking. That year, blockchain technology was sparking great interest, and voice assistants like Alexa, Siri, and Google Assistant were starting to bring AI technology into the home and workplace. Fast forward eight years, and the digital economy now accounts for 15% of world GDP, with AI integrated at scale into healthcare, finance, education, and manufacturing.

The digital economy might not seem dependent on traditional trade flows due to its intangibility. But this year's ranking finds that trade wars are affecting it – and in turn dictating digital competitiveness at both national and firm levels. In addition, the 2025 ranking takes a microscopic lens to industry trends in today's digital geopolitical sphere, using data from the IMD Executive Opinion Survey. Readers can therefore not only understand their country's mechanisms, but those of their sector on a global level.

Global trade fragmentation is affecting the digital competitiveness of nations in three main ways: firstly, it's creating winners and losers in digital infrastructure (the winners have been investing more in recent years than others, building a better framework, say, for telecoms, internet, or the application of technologies, enabling domestic reliance).

Secondly, while talent remains mobile, people are not entering certain countries in the same numbers due to geopolitical instability. This affects digital competitiveness when domestic policies and regional instability combust into a situation where more talent is leaving the country than entering it. Several of the economies we assess are victims of this and have fallen in our rankings, as my colleagues' analysis will expose.

Thirdly, in a fragmented world, regulatory advantages are becoming a key determinant of digital competitiveness. Regulatory clarification and safety enable companies and governments to incorporate the technology available as efficiently and effectively as possible. We have the EU, the US, and Southeast Asia recognizing this with certain regulatory improvements.

This year, we've added data on AI-related patent publications (from the WIPO Statistics Database) and on annual private investment in artificial intelligence (from Quid, via the Stanford AI Index Report). Namibia, Kenya, and Oman are welcome newcomers.

Our thanks go to our partner institutes for their continued commitment to facilitating this publication, and especially their support in disseminating our survey and supporting our statistical data collection, enabling us to ensure accuracy and local relevance.

Arturo Bris
Director
IMD World Competitiveness Center

Table of contents

Preface	2
The IMD World Competitiveness Center	4
Partner Institutes	5
User guide	9
Analysis	14
Reconfiguring digital strategies amid trade fragmentation	15
Digital enablers at the industry level: impacts and trend	23
An analysis of the 2025 World Digital Competitiveness Ranking's Top 10	29
Rankings in a Nutshell	32
The 2025 IMD World Digital Competitiveness Ranking	33
Methodology	34
What is the IMD World Digital Competitiveness Ranking?	35
Selected Breakdowns	36
Factor Rankings: five-year overview	42
Digital Competitiveness Economy Profiles	44
Appendices	114
Notes and Sources by Criteria	115
Index to Criteria	116

Profiles

Argentina	45
Australia	46
Austria	47
Bahrain	48
Belgium	49
Botswana	50
Brazil	51
Bulgaria	52
Canada	53
Chile	54
China	55
Colombia	56
Croatia	57
Cyprus	58
Czech Republic	59
Denmark	60
Estonia	61
Finland	62
France	63
Germany	64
Ghana	65
Greece	66
Hong Kong SAR	67
Hungary	68
Iceland	69
India	70
Indonesia	71
Ireland	72
Italy	73
Japan	74
Jordan	75
Kazakhstan	76
Kenya	77
Korea Republic	78
Kuwait	79
Latvia	80
Lithuania	81
Luxembourg	82
Malaysia	83
Mexico	84
Mongolia	85
Namibia	86
Netherlands	87
New Zealand	88
Nigeria	89
Norway	90
Oman	91
Peru	92
Philippines	93
Poland	94
Portugal	95
Puerto Rico	96
Qatar	97
Romania	98
Saudi Arabia	99
Singapore	100
Slovak Republic	101
Slovenia	102
South Africa	103
Spain	104
Sweden	105
Switzerland	106
Taiwan (Chinese Taipei)	107
Thailand	108
Türkiye	109
UAE	110
United Kingdom	111
USA	112
Venezuela	113

The IMD World Competitiveness Center

For more than thirty-five years, the IMD World Competitiveness Center has pioneered research on how countries and companies compete to lay the foundations for sustainable value creation. The competitiveness of nations is probably one of the most significant developments in modern management and IMD is committed to leading the field. The World Competitiveness Center conducts its mission in cooperation with a network of 73 Partner Institutes in 60 countries to provide the government, business and academic communities with the following services:

Competitiveness Special Reports

Competitiveness Prognostic Reports

Workshops/Mega Dives on competitiveness

IMD World Competitiveness Yearbook

IMD World Digital Competitiveness Ranking

IMD World Talent Ranking

Hinrich-IMD Sustainable Trade Index

Smart City Index

The IMD World Competitiveness Center Team

Professor Arturo Bris
Director

José Caballero
Senior Economist

Christos Cabolis
Chief Economist & Head of Operations

Fabian Grimm
Research Specialist

Madeleine Hediger
Data Research and Online Services Specialist

Matisse Graf
Intern

Jean-François Kaeser
IT Consultant (KAESCO Consulting)

Odete Madureira
WCC Coordinator

William Milner
Associate Director

Chinar Sharma
Projects Analyst

Alice Tozer
Content Manager

We also have the privilege of collaborating with a unique network of Partner Institutes, and other organizations, which guarantees the relevance of the data gathered.

Contact

e-mail: wccinfo@imd.org ↗
Internet: www.imd.org/wcc ↗

Database:
[https://worldcompetitiveness.imd.org](http://worldcompetitiveness.imd.org) ↗

Partner Institutes

We would like to express our deep appreciation for the contribution of our Partner Institutes, enabling an extensive coverage of competitiveness in their home countries. The following Institutes and people supplied data from national sources and helped distribute the survey questionnaires:

Argentina

Instituto Shaw de Estudios Empresariales, Universidad Católica Argentina
<http://www.uca.edu.ar>
Dr. Marcelo Resico, Director, Shaw Institute for Business Studies (ISEE)
Pilar Agostina Ferreyra, Research Assistant

Australia

CEDA –Committee for Economic Development of Australia
<http://www.ceda.com.au>
Cassandra Winzar, Chief Economist
Justine Parker, Media Manager

Austria

Federation of Austrian Industries, Vienna
Austrian Institute of Economic Research, Vienna
www.iv.at
Dr. Christian Helmenstein, Chief Economist
Mag. Michael Oliver, Economist

Bahrain

Ministry of Finance and National Economy
<http://www.mofne.gov.bh>
Dr. Faisal Hammad, Assistant Undersecretary for Competitiveness & Economic Indicators

Belgium

Federation of Enterprises in Belgium
<http://www.feb.be>
Dries Vantomme, Attaché Economics & Business Cycle

Botswana

Botswana National Productivity Centre (BNPC), Botswana
<http://www.bnpc.bw>
Babuya S. Siku, General Manager (Acting)
Letsogile Batsetswe, Experienced Research Consultant

Brazil

Fundação Dom Cabral Innovation, AI and Digital Technologies Center
<http://www.fdc.org.br>
Hugo Tadeu, Director and Professor
Jersone Tasso Moreira Silva, Associate Professor
Bruna Diniz, Researcher
Kaua Kenner, Researcher

Bulgaria

Bulgarian Chamber of Commerce and Industry
<http://www.bcci.bg>
Boryana Abadzhieva, Head of Economic Analysis and Policy Department
Magdalena Koshulyanova, Junior expert, Economic Analysis and Policy Department

Applied Research and Communications Fund, Center for the Study of Democracy, Sofia
<http://www.arcfund.net>; <http://www.csd.eu>

Atanas Nedyalkov, Senior Analyst, Innovation and Finance, Applied Research and Communications Fund
Ruslan G. Steanov, Program Director and Chief Economist, Center for the Study of Democracy
Daniela Mineva, Senior Analyst, Geoeconomics Program, Center for the Study of Democracy

Canada

Information and Communications Technology Council (ICTC)
<http://www.ictc-ctic.ca>
Anne M. Patterson, Chief Research and Communications Officer

Chile

Universidad de Chile, Facultad de Economía y Negocios (FEN)
<http://www.fen.uchile.cl>
Dr. Enrique Manzur, Vice Dean
Dr. Sergio Olavarrieta, Vice President
Dr. Pedro Hidalgo, Associate Professor

China

China Institute for Development Planning, Tsinghua University
<http://www.cidp.tsinghua.edu.cn>
Dr. Gong Pu, Assistant Professor and Director of Research
Dr. Yang, Yongheng, Professor & Deputy Dean
Dr. Wang, Youqiang, Professor
Huang, Suyuan, Vice Director of Research
Bi, Shiyao, MA Candidate
Jin, Shiyao, Research Assistant
Dr. Lang, Yu, Postdoctoral Fellow
Dr. Su, Chaoyang, Postdoctoral Fellow
Tang, Yuwen, MA Candidate
Yu, Hanying, MA Candidate
Zhu, Siyao, PhD Candidate

Colombia

National Planning Department
<http://www.dnp.gov.co>
Alexander Lopez Maya, General Director, Department of National Planning (DNP)
Mónica Lorena Ortiz Medina, Technical Director, Innovation and Private Sector Development -DNP

Croatia

National Competitiveness Council
Ivan Mišetić, Acting President
Biserka Sladović, Advisor
Hrvoje Stojić, Chief Economist
Croatian Employers' Association
<https://www.hup.hr>
Iva Tomic, PhD, Chief Economist

Cyprus

Cyprus Employers and Industrialists Federation
<http://www.oeb.org.cy>
Antonis Frangoudis

Economics Research Centre, University of Cyprus
<http://ucy.ac.cy/erc/en>
Sofronis Clerides, Professor of Economics
Nicoletta Pashourtidou, Assistant Director

Denmark

Confederation of Danish Industry
<http://www.danskindustri.dk/english>
Allan Sørensen, Chief Economist

Estonia

Estonian Institute of Economic Research (EKI)
<http://www.ki.ee/en>
Peeter Raudsepp, Member of the Board
Bruno Pulver, Member of the Board

Enterprise Estonia (EAS)
<https://eis.ee/en>
Helery Tasane, Head of Strategy and Analysis

Finland

ETLA Economic Research
www.etla.fi
Dr. Ville Kaitila, Researcher
Päivi Puonti, Head of Forecasting
Aki Kangasharju, Managing Director

Ghana

Management Development and Productivity Institute
<http://www.mdpi.gov.gh>
Professor Elijah Yendaw, Ag. Director General
Ethel Ansah-Antwi, Ag. Director, Consultancy Unit
Stephen Asirifi Essel, Consultancy Unit

Partner Institutes

Greece

Federation of Industries of Greece (SBE), Thessaloniki
sbe.org.gr
Dr. Christos Georgiou, Director Research & Documentation Dept.
Constantinos Styliaras, Economist, Research and Documentation Department

Foundation for Economic and Industrial Research (FEIR/IOBE), Athens
http://iobe.gr/default_en.asp
Sophia Stavraki, Research Associate

Hong Kong SAR

Hong Kong Trade Development Council
<http://www.hktdc.com>
Wing Chu, Principal Economist
Cherry Yeung, Senior Economist
Cathy Kwan, Senior Research Executive

Hungary

ICEG European Center, Budapest
<http://icegec.org>
Renata Jaksa, Director
Oliver Kovacs, Senior Research Fellow

National University of Public Service
www.uni-nke.hu
Dr. Magdolna Csath, Private Professor

Iceland

Icelandic Chamber of Commerce, Reykjavik
<http://www.chamber.is>
Björn Brynjúlfur Björnsson, Managing Director
Gunnar Úlfarsson, Chief Economist

India

National Productivity Council, New Delhi
<http://www.npcindia.gov.in>
Rajesh Sund, Director & Group Head (Economic Services)

Indonesia

Lembaga Management, Faculty of Economics and Business, Universitas Indonesia (LM FEB UI), Jakarta
www.lmfebui.com
Prof. Dr. Ir. T. Ezni Balqiah, M.E., M.H., Director of Research and Consulting
Dr. Nurdin Sobari, Senior Researcher
Dr. Willem A. Makaliwe, Senior Researcher
Bayuadi Wibowo, Senior Researcher
AA Dwi Mustia Dewi, Researcher
Annisa Pratiwi, Researcher

NuPMK Consulting, Jakarta
<http://nupmk.co.id>
Tini Moeis, Managing Director
Devi Ria Dinanti, Chief Marketing Officer

Ireland

IDA Ireland, Investment and Development Agency
<http://www.idaireland.com>
Malgorzata Ferraz, Planning Manager

Japan

Keizai Doyukai, Japan Association of Corporate Executives
<https://www.doyukai.or.jp/en>
Katsumi Miyazaki

Mitsubishi Research Institute, Inc., Tokyo Research Centre for Policy and Economy
<https://www.mri.co.jp/en/index.html>
Dr. Hirotugu Sakai, Research Director

Jordan

Ministry of Planning and International Cooperation
<http://www.mop.gov.jo>
Omar Fanek, National Policies Support Department Director
Mira Mango, Head of the Competitiveness and International Indices Division

Kazakhstan

Economic Research Institute, JSC of the Ministry of National Economy of the Republic of Kazakhstan, Astana
<https://eri.kz>
Kymbat Akhmetzhanova, Director, Center for Strategic Analysis
Assel Tasbauova, Deputy Director
Natalya Novokshanova, Deputy Director
Aimira Sabugaliyeva, Lead Expert

Kenya

National Productivity and Competitiveness Centre
<https://saraka.info/ministries/labour-and-social-protection/labour-and-skill-development/npcc/>
George E. G. Njiru, Principal Productivity Officer
Dr. Nahashon Moitaleel, Director

Korea

Korea Chamber of Commerce and Industry (KCCI)
<http://english.korcam.net/>
Ethan Cho, Deputy Director

Korea Institute for International Economic Policy (KIEP)
<https://www.kiep.go.kr/eng/>
Jiyun Lee, Researcher, International Macroeconomics Team
Dr. Hayun Song, Associate Research Fellow, International Macroeconomics Team

Kuwait

Kuwait Anti Corruption Authority (Nazaha)
<https://www.nazaha.gov.kw>
Dhari Buyabes, Head of International Organizations and Conferences, International Cooperation Department

Latvia

University of Latvia, Faculty of Economic and Social Sciences, Centre for European and Transition Studies -CETS
<http://www.lu.lv/cets>
Dr. Zane Zeibote, Director
Prof. Dr. Tatjana Muravská, Honorary Director

Lithuania

Innovation Agency Lithuania
<https://innovationagency.lt>
Kotryna Tamoševičienė, Head of Research and Analysis Unit
Indrė Žebrauskaitė, Senior Analyst

Luxembourg

Luxembourg Chamber of Commerce
<https://www.cc.lu/en>
Sidonie Paris, Senior Economist
Anthony Villeneuve, Senior Economist
Christel Chatelain

Malaysia

Malaysia Productivity Corporation
<http://www.mpc.gov.my>
Zahid Ismail, Director General
Dr. Mazrina Mohamed Ibramsah, Deputy Director General
Dr. Mohamad Norjayadi Tamam, Deputy Director General
Wan Fazlin Nadia Wan Osman, Director
Mohammed Alamin Rehan, Director
Shanthini Tamadoram

Partner Institutes

Mexico

Center for Strategic Studies for Competitiveness
<http://www.ceec.edu.mx>
Carlos Maroto Espinosa, General Manager

Mongolia

Economic Policy and Competitiveness Research Center
<http://www.ecrc.mn>
Tsagaan Puntsag, Founder and Chairman of Board
Lakshmi Boojoo, Director General
Odonchimeg Ikhbayar, Deputy Director, Head of Research
Ganbat Chuluun, Research Economist
Tungalag Erdenebat, Research Economist
Mungunjiguur Battsolmon, Research Economist

Namibia

Namibia Investment Promotion and Development Board
<https://www.nipdb.com>
Dr. Nangula Nelulu Uaandja, Chief Executive Officer
Margareth Gustavo, Executive: Competitiveness & Branding

Netherlands

Confederation of Netherlands Industry and Employers (VNO-NCW), Netherlands
www.vno-ncw.nl
Thomas Grosfeld
Tim Zandbergen

New Zealand

Auckland Business Chamber
<https://aucklandchamber.co.nz>
Simon Bridges, Chief Executive Officer

Nigeria

National Productivity Centre, Nigeria
<https://productivity.gov.ng/>
Dr. Baffa Babba Dan Agundi, Director-General
Dr. Adejoh David Onuche, Director, Productivity Measurement & Index

Oman

National Competitiveness Office, Oman
<https://www.nco.om>
Dr. Fahad Rashid Saif Al Jahwari, Director
Abdulrahman Al Hinaai, Head of National Account Indicators Department, National Centre for Statistics and Information
Jawaher Al Habsi, Statistical Data Analyst

Peru

CENTRUM PUCP
<https://centrum.pucp.edu.pe>
Percy Marquina, General Director
Dr. Luis Del Carpio, Director of Programs
Beatrice Avolio, General Director
Victor Fajardo, Researcher
José Calsina, Research Assistant

Philippines

Asian Institute of Management R.S.N. Policy Center for Competitiveness (AIM RSN PCC)
<https://aim.edu/research-centers/rizalino-s-navarro-policy-center-competitiveness>
Prof. Jamil Paolo S. Francisco, Executive Director
Christopher Caboverde, Research Manager
Hauvre Somova, Economist

Poland

SGH Warsaw School of Economics
<https://www.sgh.waw.pl/en>
Prof. Marzenna Weresa, Dean
Dr. Anna Dzienis, Adjunct Professor

Portugal

Porto Business School, University of Porto, Porto
<https://www.pbs.up.pt>
José Esteves, Dean
Cádia Santana, Project Officer
Prof. Álvaro Almeida
Prof. Daniel Bessa
Prof. Filipe Grilo
Prof. José Luís Alvim
Prof. João Loureiro
Prof. Patrícia Teixeira Lopes

Puerto Rico

Puerto Rico Department of Economic Development and Commerce
<https://www.desarrollo.pr.gov/>
Hon. Sebastián Negrón Reichard, Secretary for Economic Development & Commerce
José L. Rivera Rivera, Economist-Director for Economic Analysis & Business Intelligence

Invest Puerto Rico

<https://www.investpr.org>
John Bozek, Chief Strategy and Research Officer

Puerto Rico International Competitiveness Center

<https://www.uagm.edu/es/division-de-negocios-turismo-y-emprendimiento>
Francisco Montalvo Fiol, Adjunct Professor, Doctoral Program

Qatar

National Planning Council
<http://www.npc.qa>
Ahmed Alsumaiti, Director of International indicator & International Cooperation Dep.
Hissa AL-Assiry, Project Manager

Romania

CIT-IRECSON Center of Technological Information
<https://cit.irecson.ro>
Dr. Bogdan Ciocan, Phd, Director
Dan Grigore, Economist

Saudi Arabia

NCC, National Competitiveness Center
<https://www.ncc.gov.sa/en/Pages/default.aspx>
H.E. Dr Eiman AlMutairi, CEO of National Competitiveness Center
Waleed AlRudaian, Vice President
Salman M. Altukhaifi, General Manager of Analytics & Business Intelligence

Singapore

Ministry of Trade and Industry
<http://www.mti.gov.sg>

Singapore Business Federation

<https://www.sbf.org.sg>
Edwin Heng, Director, Research and publishing
Lim Kai Yun, Assistant Manager, Research & Publishing

Slovak Republic

Institute of Freedom and Enterprise
Ján Oravec, Chairman

Slovenia

Institute for Economic Research
<https://www.ier.si/en>
Peter Stanovnik, President
Sonja Uršič

University of Ljubljana, School of Economics and Business
<http://www.ef.uni-lj.si/en>
Mateja Drnovsek, Full Professor

Partner Institutes

South Africa

Productivity SA
www.productivitysa.co.za
Amelia Naidoo, Acting Chief Executive Officer
Sebolelo Juliet Mashabela, Acting Chief Economist

Spain

Spanish Confederation of Employers
<https://www.ceoe.es/es>
Edita Pereira, Head of Economic Research Unit
Paloma Blanco, Economic Research Unit

Taiwan (Chinese Taipei)

National Development Council
<http://www.ndc.gov.tw>
Kao, Shien-Quey, Deputy Minister
Chiu-Ying Chiu, Director of Economic
Development Department
Wang, Chen-Ya, Executive Officer

Thailand

Thailand Management Association
<http://www.tma.or.th>
Wanweera Rachdawong, Chief Executive Officer
Pornkanok Wipusanawan, Director TMA Center
for Competitiveness
Tossanun Preratipoomsret, Manager, TMA Center
for Competitiveness

Türkiye

TUSIAD Turkish Industry and Business Association,
Economic Research Department
<http://www.tusiad.org>
Gizem Öztok Altınsaç, Chief Economist
Yiğit Başat Şimşek, Director
İsmet Tosunoğlu, Economist
İrem Sipahi, Senior Expert

United Arab Emirates

Federal Competitiveness
and Statistics Centre (FCSC)
<http://fcsc.gov.ae/>

Venezuela

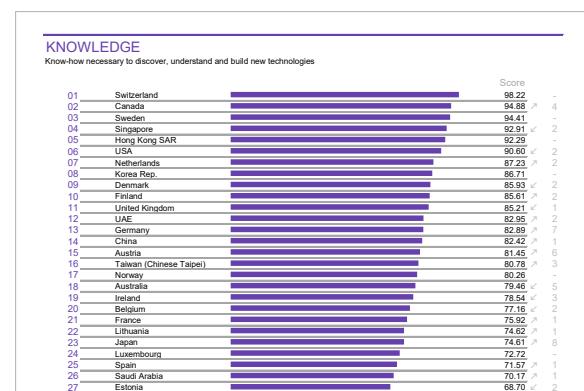
National Council to Investment Promotion (CONAPRI)
<http://www.conapri.org>
Dr. Juan Cabral, Executive Director
Jennyn Osorio, Economics Affairs Manager
Lilian Zambrano, Manager of Legal Affairs

User guide

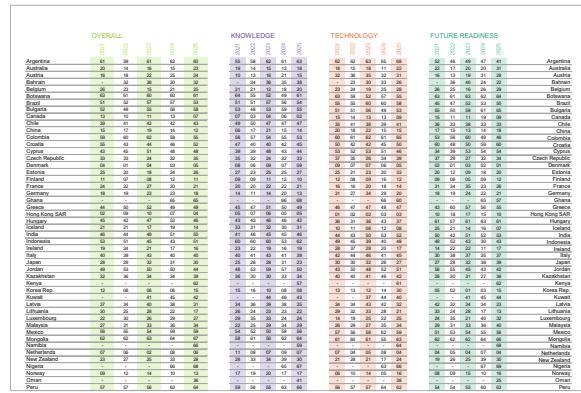
User Guide for the IMD World Digital Competitiveness Ranking

Overall and Breakdown: Digital Rankings

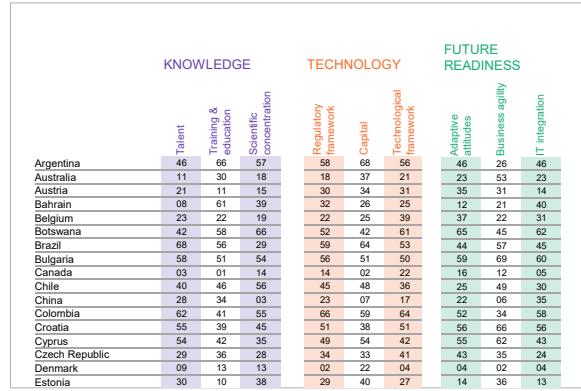
The IMD World Digital Competitiveness Ranking


The IMD World Digital Competitiveness Ranking presents the 2025 overall rankings for the 69 economies covered by the WCY. The rankings are calculated on the basis of the 61 ranked criteria: 40 hard and 21 survey data. The countries are ranked from the most to the least digital competitive. The final column shows the improvement or decline from the previous year. The index value or “score” is also indicated for each country.

Selected breakdowns of the IMD World Digital Competitiveness Ranking


In addition to global digital rankings, other rankings are provided to show comparisons based on different perspectives. These digital rankings include countries split by population size (populations above and below 20 million), by GDP per capita to reflect different peer groups (above and below \$20,000) and three regional rankings drawn from different geographical areas (Europe-Middle East-Africa, Asia-Pacific and the Americas).

Digital Competitiveness Factor Rankings


The global rankings for each of the Digital Competitiveness Factors are then shown as individual ranking tables. Again, the economies are ranked from the most to the least digital competitive and the previous year's rankings (2024) are shown in brackets. Similar to the Overall Digital Ranking, the values or “scores” are indicated for each Factor. However, there is only one economy that has a score of 100 and one economy with a score of 0 across all four Factors.

Overall Ranking and Digital Competitiveness Factors

This section presents the overall rankings and the 5-year trends for each of the three Digital Competitiveness Factors: Knowledge, Technology and Future Readiness. Thus, the reader is able to analyze the digital evolution of an economy over the past few years relative to the others on a global basis.

Digital Sub-factor Rankings

A summary of the rankings for all nine sub-factors is presented for the 69 economies for 2025. It is possible, at a glance, to determine in what areas of digital competitiveness an economy excels or has particular weaknesses and to make comparisons between countries. These rankings provide a more detailed examination of specific aspects of the digital transformation and can be used to, for example, evaluate the technological framework of a country or support international investment decisions.

We view the rankings as a tool for managers or policy makers to use when they analyze the above questions. Of course, each company must take into consideration the logic of its own economic sector, economic forecasts and its own traditions as well as governments should consider the national identity and value system of their economy.

Digital Competitiveness Country Profiles

Each two-page profile analyses the performance of one of the 69 economies that are included in the IMD World Digital Competitiveness Ranking. The economies are presented in alphabetical order. The term economy signifies an economic entity and does not imply any political independence.

It is possible, in one glimpse, to evaluate the digital evolution of each economy over time and its relative strengths and weaknesses. However, each economy's particular situation is influenced by its development level, political restraints and social value system.

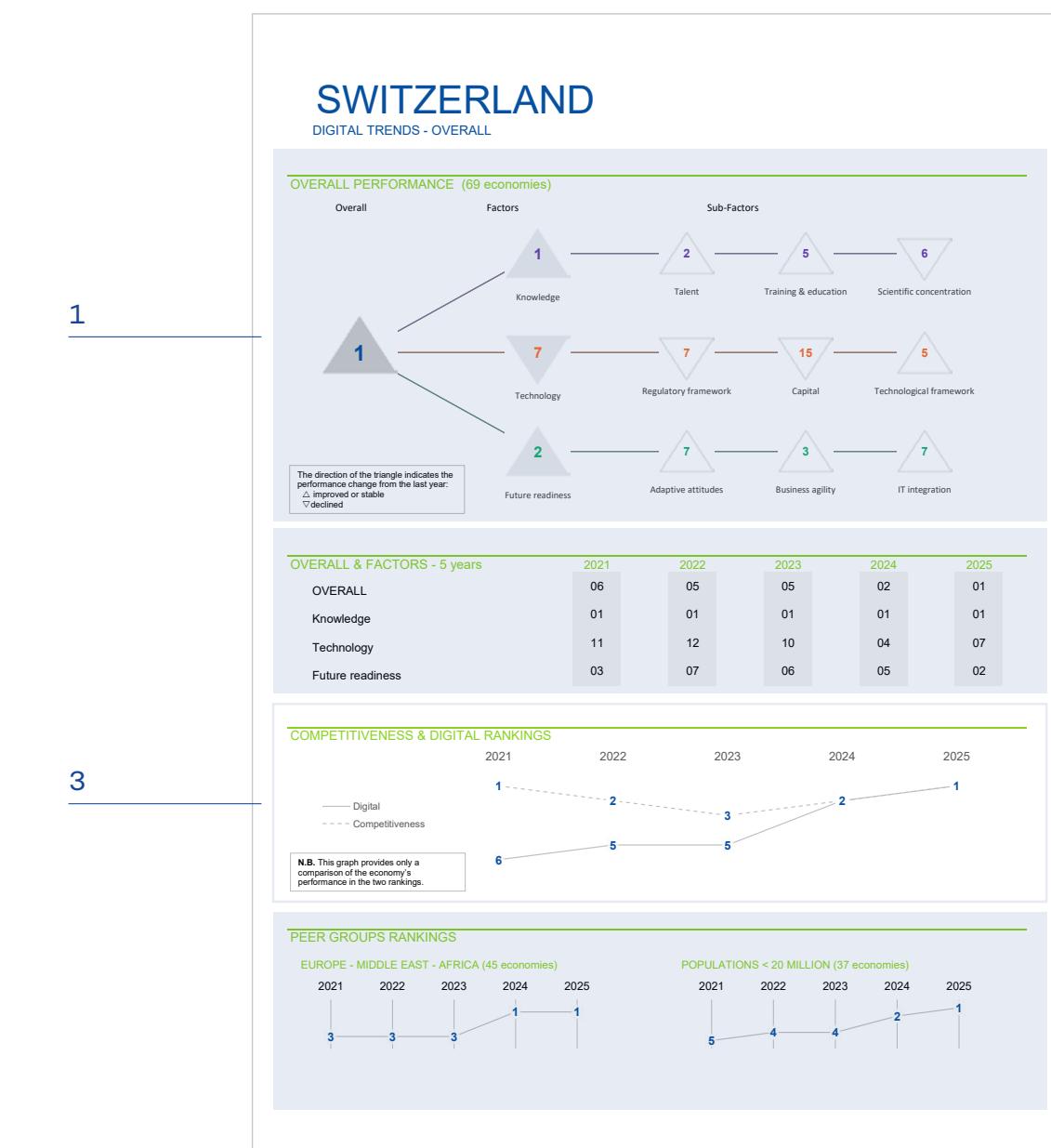
Page 1: Digital Competitiveness – Overall and factors trends

This page shows the overall, factor and sub-factor ranking performances of the country in 2025, their 5-year trends and a comparison between competitiveness and digital competitiveness rankings. The following indicators are presented:

1. Overall Performance

Overall, factors and sub-factors digital ranking performances of the country in 2025. The direction of the triangles indicates whether there has been an improvement or a decline with respect to the previous year.

2. Overall & Factors – 5 years


The evolution of the overall and factors digital rankings in the past 5 years.

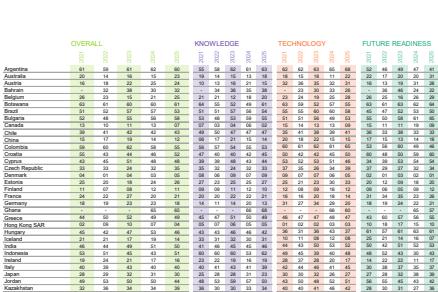
3. Competitiveness and Digital Rankings

Comparison of the country's performances in the World Competitiveness Ranking and World Digital Competitiveness Ranking in the last 5 years.

4. Peer Group Rankings

Based on geographical region and population size.

Digital Competitiveness Country Profile – Page 1


1 Overall Performance

Sub-factors Ranking


2 Overall & Factors

5-years Evolution

4 Peer Group Rankings

Selected breakdowns

Digital Competitiveness Country Profiles

Page 2: Factors breakdown & Strengths and Weaknesses

This page shows the country's performance over time for each of the nine sub-factors composing the three Digital Competitiveness Factors (Knowledge, Technology and Future Readiness) and their 61 criteria rankings for 2025.

1. Factors Breakdown

Shows the 5-years evolution of the sub-factors rankings composing the three factors of Knowledge, Technology and Future Readiness.

2. Strengths and Weaknesses

This section highlights the economy's strongest and weakest criteria included in the World Digital Competitiveness Ranking. The triangles identify the five top criteria in which the economy ranks best (strengths ▶) and the five criteria in which its performance is the worst (weaknesses ▷) compared to the other countries included in the WCY sample. The selection of indicators is determined by the standard deviation values (STD) of the country for that specific criteria. In other words, the criteria selected represent the highest STD values and the lowest STD values among the 61 indicators composing the World Digital Competitiveness Ranking and can thus be considered the digital competitive advantages and disadvantages of the economy.

The full criteria names can be found in the Appendix and the statistical tables are available for subscribers of the [IMD World Competitiveness Online](#) ↗

It is important to note that what constitutes a strength or weakness is relative to each economy's circumstances or development. Also, the ranking position of a country may not necessarily improve or decline as a consequence of its own evolution since it is always relative to the performance of the other economies. Therefore, an improvement may not be reflected by a higher ranking position if other economies have performed better for the criterion in question. The same can be said for any declines in performance – the economy's ranking position relative to the others may or may not fall, depending on how the other economies have performed.

1

SWITZERLAND

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths ▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	03	02	02	03	02
Training & education	07	08	07	08	05
Scientific concentration	08	08	10	02	06

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	09	08	04	02	07
Capital	12	12	11	11	15
Technological framework	11	11	12	07	05

FUTURE READINESS

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	10	12	16	15	07
Business agility	04	07	07	07	03
IT integration	04	06	06	07	07

Digital Competitiveness Country Profile – Page 2

1 Factors Breakdown

5-years Evolution

	OVERALL					KNOWLEDGE				
	2021	2022	2023	2024	2025	2021	2022	2023	2024	2025
Argentina	61	59	61	62	60	55	58	62	61	63
Australia	20	14	16	15	22	19	14	15	13	18
Austria	9	18	22	23	24	10	13	15	14	15
Bahrain	-	32	38	30	32	34	36	35	38	
Belgium	26	23	15	21	25	21	21	12	18	20
Bolivia	65	61	60	61	61	65	62	63	61	61
Brazil	51	52	57	57	53	51	51	57	56	54
Bulgaria	52	48	55	56	58	53	48	53	59	55
Canada	13	10	11	13	07	07	03	04	06	02
China	41	42	42	43	47	39	39	41	47	47
China	15	17	19	14	12	06	17	21	15	14
Colombia	59	60	62	58	55	56	57	54	55	53
Croatia	55	43	44	46	52	47	40	42	45	
Cuba	45	42	51	48	43	39	42	49	44	
Czech Republic	33	33	24	32	35	35	32	24	32	33
Denmark	04	01	20	18	03	03	06	09	07	09
Estonia	25	20	18	24	26	27	23	29	25	27
Finland	11	10	08	11	11	09	10	10	10	10
France	24	22	27	20	21	20	20	22	22	21

Sub-factors Ranking

	KNOWLEDGE	TECHNOLOGY	FUTURE READINESS
Talent	46	66	57
Training & education	58	68	56
Scientific concentration	58	68	56
Regulatory framework	46	26	46
Capital	46	26	46
Technological framework	37	22	31
Adaptive attitudes	46	26	46
Business agility	46	26	46
IT integration	46	26	46
E-Government	24	24	24
Public-private partnerships	06	06	06
Cyber security	09	09	09
Software piracy	10	10	10
Government cyber security capacity	32	32	32
Privacy protection by law exists	28	28	28

Appendices

Appendix 1: Composition of sub-regions and regions

Western Europe	Austria	Italy	Europe, Middle East & Africa	Asia & Pacific	Ex-CIS & Central Asia	Kazakhstan
	Belgium	Luxemburg			Mongolia	
	Cyprus	Netherlands			China	Korea Republic
	Denmark	Norway			Hong Kong SAR	Taiwan (Chinese Taipei)
	Finland	Portugal			Japan	
	France	Spain			Australia	New Zealand
	Germany	Sweden			India	Philippines
	Greece	Switzerland			Indonesia	Singapore
	Iceland	United Kingdom			Malaysia	Thailand
	Ireland				North America	Canada
Eastern Europe	Bulgaria	Lithuania			Mexico	Puerto Rico
	Czech Republic	Poland			Argentina	USA
	Estonia	Romania			Brazil	Colombia
	Croatia	Slovenia			Chile	Peru
	Hungary	Slovak Republic			South America	Venezuela
	Latvia					
Western Asia & Africa	Bahrain	Nigeria				
	Botswana	Oman				
	Ghana	Qatar				
	Jordan	Saudi Arabia				
	Kenya	South Africa				
	Kuwait	Türkiye				
	Namibia	UAE				

Analysis

Reconfiguring digital strategies amid trade fragmentation National and firm-level challenges

José Caballero
Senior Economist
IMD World Competitiveness Center

The current world (dis)order is characterized by escalating geopolitical rivalries, contested trade norms, and fragmented institutional frameworks, which are together shaping all aspects of economic life and having particularly deep effects on firms operating across borders. Trade conflicts were once thought to be confined to disputes over tariffs or quotas, but are now clearly extending deep into the intangible roots of the digital economy: intellectual property, data flows, technical standards, and strategic technologies.

As a result, the competitiveness environment in which firms operate is no longer defined solely by market forces or innovation capabilities, but increasingly by the volatility of trade relations and the growing differences among countries and regions in the ways they regulate, develop, and adopt technology. In such a context, digital strategy is far from protected from external disruptions. Moreover, it is structurally embedded within such disruptions.

Access to technology and overseas markets, as well as research collaboration and international talent mobility, have become subject to a complex web of bilateral restrictions, retaliatory policies, and non-tariff barriers. This new level of institutional fragmentation erodes the predictability on which digital competitiveness has historically relied. Firms, particularly those embedded in global value chains or reliant on platform interoperability, face major strategic consequences. Their digital ambitions are now filtered through questions of geopolitical alignment, jurisdictional compliance, and technological self-sufficiency.

Moreover, the ripple effects extend beyond technology-intensive sectors. Even service-oriented firms must contend with localization demands (e.g., digital platforms built or hosted locally), dual-use restrictions (e.g., export controls on technologies with commercial and potential military use), and uncertainty in international standards recognition. In short, the

ongoing disintegration of the global economic order is not a background variable, but a hindrance to strategic viability.

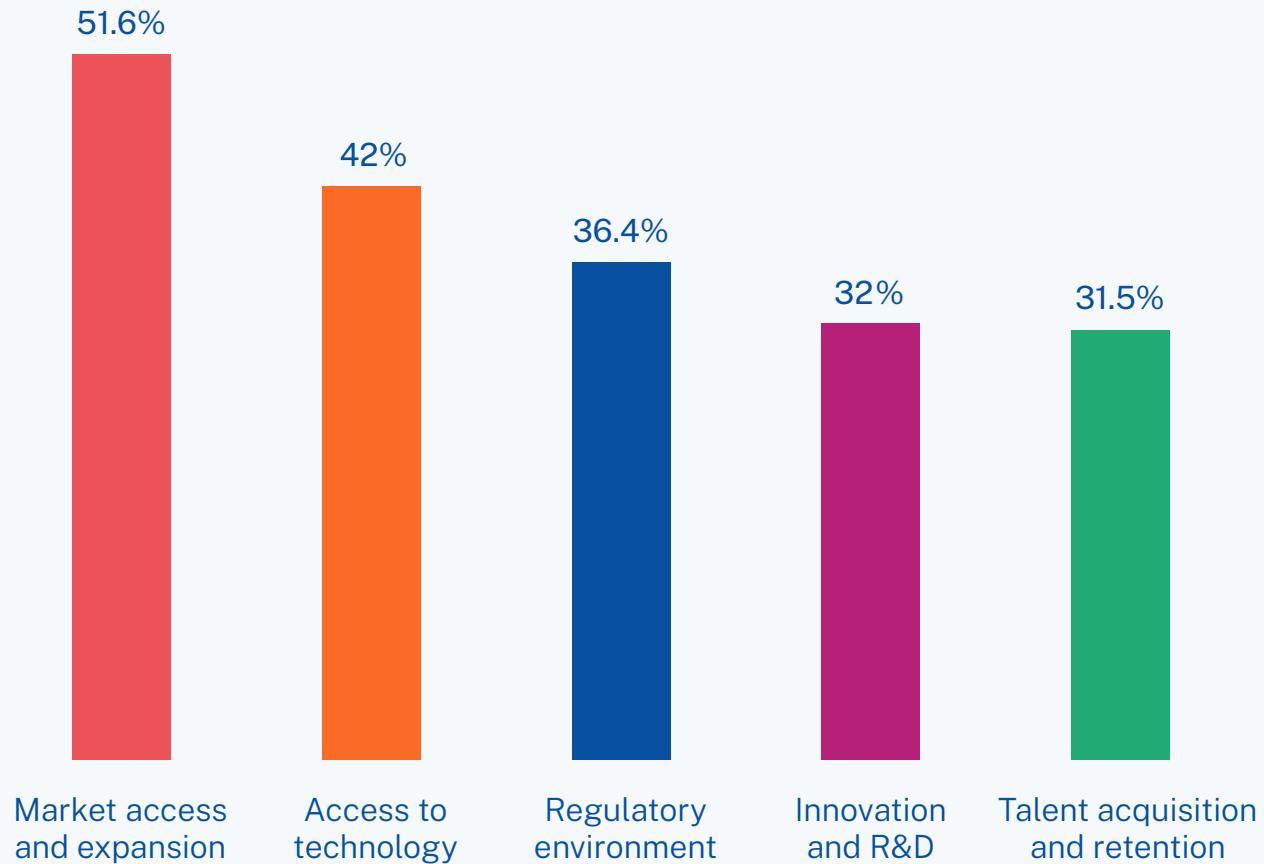
As firms evaluate their digital strategies amid mounting trade tensions, the boundaries between economic planning and geopolitical risk management continue to blur. Understanding this multi-domain disruption is essential for analyzing how digital competitiveness is redefined in the current international economy. Not through efficiency and scale alone, rather, through resilience, adaptability, and institutional effectiveness across an increasingly contested global context.

With this scenario in mind, we assess in greater detail the impact of several strategic domains on digital strategy and how trade tensions are affecting them. These domains include market access and expansion, access to technology, regulatory environment, innovation and R&D, and talent acquisition and retention. The analysis of each domain is two-fold. First, we examine their fundamental role in digital strategy. Second, we present highlights of national rankings, regional patterns, and sectoral dynamics relevant to each domain. Such an assessment of the impact of trade fragmentation is based on evidence drawn from the perspectives of business leaders who participated in IMD's Executive Opinion Survey.

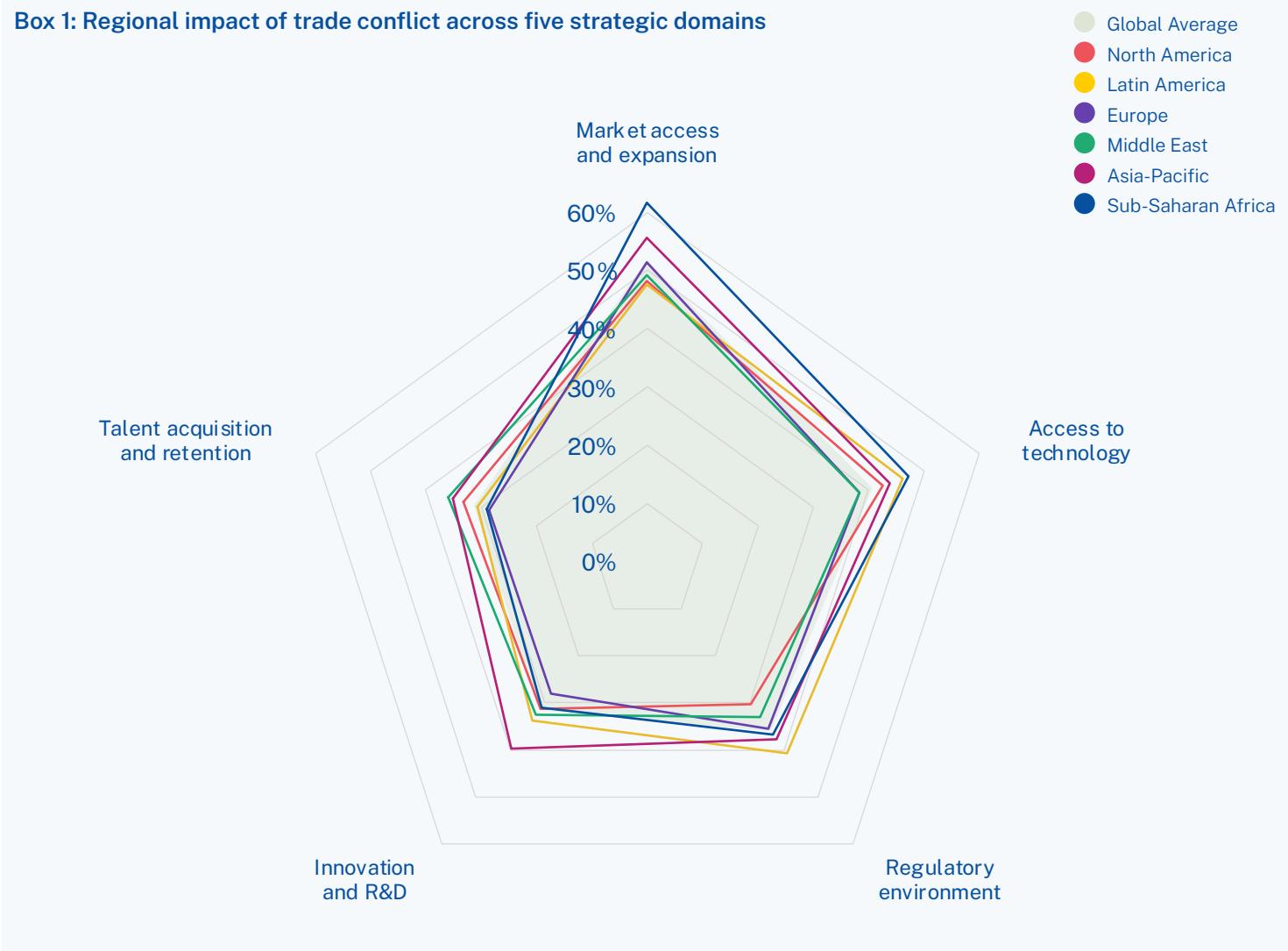
Indeed, a core part of the data forming the results of the IMD Digital Competitiveness Ranking comes from the survey responses from 6,162 senior executives in 69 countries. By focusing on a specific section of this survey, we can delve deeper into how trade conflict is affecting the five strategic domains of digital strategy at the firm level.

The survey asked respondents: "In which areas do international trade conflicts have the most impact on the digital strategy of your organization?" They could choose any number of the following answers: market access and expansion, access to technology, the regulatory environment, innovation and R&D, and talent acquisition and retention.

Reconfiguring digital strategies amid trade fragmentation


National and firm-level challenges

The results are different on a country level but globally consistent.


The results indicate that the disruption firms are facing due to trade conflict is multi-dimensional. While market access and expansion, and access to technology emerge as the most widely cited areas of concern, regulatory fragmentation, innovation and R&D constraints, and talent

shortages are widely reported (see Figure 1). Highly impacted countries, meaning countries where executives voted the most for any one of the five domains, include both advanced and emerging economies. This suggests that exposure to cross-border digital flows, and not income level, is the primary determinant of strategic vulnerability to trade fragmentation.

Figure 1: Impact of trade conflicts across strategic domains (percentage of executives reporting five separate effects)

Box 1: Regional impact of trade conflict across five strategic domains

Below, we analyze each domain comparatively and highlight national rankings, regional patterns, and sectoral dynamics. The findings show that trade conflict is now a structural feature of the global economy. It can shape where, how, and with whom digital strategies can be executed.

1. Market access and expansion

Market access stands out as the domain most directly and immediately affected by trade

conflicts. While traditionally associated with tariffs and border logistics, market access in the digital economy encompasses a wider and more complex set of institutional conditions. These include access to digital platforms, cloud infrastructure, foreign client bases, and interoperable data ecosystems. Firms pursuing digital expansion strategies rely not only on the ability to deliver services across borders but also on predictable access to regulatory environments that support secure, scalable, and lawful engagement with international customers.

Reconfiguring digital strategies amid trade fragmentation

National and firm-level challenges

Evidence highlights the outsized impact of trade-induced constraints on market access. Small and medium-sized enterprises (SMEs), for instance, engaged in digital exports, experience revenue declines of up to 20% when faced with delays, licensing restrictions, or compliance bottlenecks associated with trade conflict.¹ This pattern is corroborated by countries experiencing digital trade restrictions, which see significantly reduced digital service exports and slower technological adoption.² Furthermore, access barriers disproportionately affect firms that lack the legal or administrative capacity to navigate fragmented trade regimes, particularly those in emerging markets. Such constraints operate through a range of formal and informal channels. Regulatory asymmetries like mandatory data localization, inconsistent licensing frameworks, and cross-border taxation undermine the ability of firms to operate seamlessly across jurisdictions.³

These policies convert scale-driven digital services into geographically isolated operations. The latter requires duplicated infrastructure, specialized compliance teams, or the abandonment of certain markets altogether. Even when firms are technically capable of cross-border operations, the reputational and legal risks introduced by trade-based retaliation can deter investment or hinder market-entry strategies.

1 Freund, C., Mattoo, A., Mulabdic, A., & Ruta, M. (2024). Is US trade policy reshaping global supply chains?. *Journal of International Economics*, 152, 10401.

2 Ferracane, M. F., Lee-Makiyama, H., & Van Der Marel, E. (2018). Digital trade restrictiveness index. *European Center for International Political Economy*, 5.

3 Ferracane, M. F., Kren, J., & Van Der Marel, E. (2020). Do data policy restrictions impact the productivity performance of firms and industries?. *Review of International Economics*, 28(3), 676-722.

What do executives say?

Among the five strategic domains evaluated in our Executive Opinion Survey, market access emerges as the most frequently affected by international trade conflicts. A total of 51.63% of survey participants report that trade tensions have negatively influenced their firm's ability to enter, operate in, or expand across international markets. This finding, in turn, underscores the heightened vulnerability of cross-border commercial engagement in an era of growing institutional fragmentation, retaliatory trade measures, and technopolitical segmentation. Market access in the digital economy encompasses access to cloud platforms, cross-jurisdictional licensing, regulatory interoperability, and data mobility. All of these dimensions are increasingly subject to policy volatility. Firms pursuing digital internationalization rely on predictable access to digital infrastructure, stable digital services taxation frameworks, and legal assurance for remote service delivery. Trade conflict compromises these foundations by introducing abrupt changes in legal exposure, compliance cost, and reputational risk.

The countries reporting the most severe market access constraints provide key insights into how this disruption plays out in different economic contexts. Jordan ranks first globally, with 79.21% of executives citing trade-induced obstacles to market access. Kenya follows at 72.22%, Lithuania (70%), Latvia (69.05%), and Bulgaria (65.22%) complete the top five. Despite wide variation in income levels and digital sector maturity, these countries share common features. They have outward-oriented digital services sectors, limited domestic markets, and reliance on platform interoperability or transnational regulatory access.

Jordan and Kenya exemplify the challenges faced by smaller, outward-oriented digital economies navigating multiple regulatory regimes.⁴ Jordanian firms in fintech, business process outsourcing (BPO), and software as a service (SaaS) operate across the Middle East, Europe, and North America, but face mounting barriers from divergent cybersecurity standards, digital tax rules, and platform-specific sanctions. Similarly, Kenya's role as East Africa's digital hub is constrained by cross-border frictions such as content hosting mandates, internet taxation, and conflicting consumer protection laws. Emerging data nationalism policies further fragment regional markets, turning previously dynamic digital service flows into isolated national systems.⁵ In Europe, Lithuania, Latvia, and Bulgaria illustrate how smaller EU members with active tech export sectors remain vulnerable to external trade frictions. Though integrated into the EU digital market, their reliance on clients in the UK, the US, and Asia exposes them to post-Brexit divergence, GDPR debates, and transatlantic disputes. These elements raise compliance costs, legal uncertainty, and the need for duplicative infrastructure.

Other Asian and African countries also report substantial market access disruptions. Indonesia (63.93%) ranks sixth globally, reflecting the country's increasing digital export orientation. Indonesian firms face constraints from both China-US platform divisions and data flow friction with key ASEAN trading partners. Botswana (63.08%) and South Africa (62.30%) also appear in the top ten. The latter indicates that even in regions with lower aggregate digital

trade volumes, firms are feeling the impact of shifting access conditions, such as those related to cloud services, authentication protocols, and transnational payments. Additionally, Taiwan (Chinese Taipei, 64.66%) and Denmark (63.46%) offer cases of advanced economies facing unique access challenges. On the one hand, Taiwan's strategic alignment with US technology architecture exposes its firms to exclusion from certain Chinese platforms and standards while also making them collateral targets in retaliatory trade responses. On the other hand, Denmark's high score is notable given its strong digital governance record and EU integration. The likely drivers include stricter enforcement of EU digital services rules and uncertainty regarding access to non-EU digital markets amid increasing regulatory fragmentation.

What emerges across these examples is a clear pattern. The loss of market access is not necessarily due to declining competitiveness or lack of innovation, but to rising uncertainty in the legal, technological, and political conditions that govern international digital transactions. Firms are often caught between conflicting regimes such as the US cloud export compliance, Chinese platform restrictions, and EU data localization, and must make difficult strategic decisions about jurisdictional alignment.

2. Access to technology

Access to enabling technologies, including hardware, software, digital platforms, and specialized components, is essential for digital competitiveness. While innovation drives the creation of new capabilities, access to technology determines a firm's ability to adopt, scale, and operationalize those innovations.

4 World Bank, & World Trade Organization. (2023). Digital trade for development. Washington, DC: World Bank; Geneva: World Trade Organization. <https://openknowledge.worldbank.org/handle/10986/40454>

5 Del Giovane, C., Ferencz, J., & López-González, J. (2023). Nature, evolution and potential implications of data localisation measures (OECD Trade Policy Papers No. 278). OECD Publishing.

Reconfiguring digital strategies amid trade fragmentation

National and firm-level challenges

Trade policy plays a critical role in this access. When trade is open, it facilitates the global diffusion of cutting-edge tools. Conversely, when restricted, it isolates firms from critical resources. That is to say that trade integration accelerates technological upgrading via imports of intermediate and capital goods.⁶ However, such a process is jeopardized when geopolitical tensions result in export bans, blacklists, or licensing limitations.

There is evidence that digital trade barriers significantly reduce technological innovation efficiency.⁷ These barriers include cross-border licensing requirements, data localization rules, and platform access restrictions. Their effects are particularly important in mid-income economies with limited domestic alternatives. For example, evidence indicates that semiconductor trade disruptions led to cascading delays and cost increases in downstream firms reliant on timely access to high-performance chips. These indirect effects highlight the systemic character of technology supply chains, where constraints at the upstream level reverberate throughout entire sectors.⁸

At the firm level, the uncertainty surrounding trade-based technology restrictions inhibits investment in infrastructure upgrades and system integration. Firms facing uncertain access to foundational technologies, whether due to export controls, supply chain reconfiguration, or retaliatory sanctions, tend to delay digital modernization in favor of legacy

6 See for instance Coe, D. T., & Helpman, E. (1995). International R&D spillovers. *European economic review*, 39(5), 859-887.

7 Yan, M., & Liu, H. (2024). The impact of digital trade barriers on technological innovation efficiency and sustainable development. *Sustainability*, 16(12), 5169.

8 Kravchenko, K., Gruchmann, T., Ivanova, M., & Ivanov, D. (2024). Responding to the ripple effect from systemic disruptions: empirical evidence from the semiconductor shortage during COVID-19. *Modern Supply Chain Research and Applications*, 6(4), 354-375.

system maintenance.⁹ In dynamic sectors like fintech, logistics, and e-commerce, such hesitation leads to digital competitiveness gaps that are difficult to recover. In short, access to technology is not a passive condition but an active determinant of competitiveness parity in a volatile global economy.

What do executives say?

Access to enabling technologies also forms the operational basis of any digitally competitive enterprise. Think cloud infrastructure, digital platforms, semiconductors, and AI engines. In an increasingly conflictual trade landscape, this domain is subject to growing strain. 41.98% of survey respondents report that international trade conflicts have negatively affected their firm's access to essential technologies.

Cross-national analysis indicates that such an impact is not confined to any one region or income group. Rather, the most severely affected economies include both advanced industrial countries and emerging digital markets. Poland leads the global ranking, with 67.61% of executives citing negative effects in this domain. Ghana (61.40%), France (61.02%), Malaysia (60.50%), and Botswana (56.92%) round out the top five. This distribution points to a convergence of technological dependencies across geographies, where supply chain positioning and external licensing access may matter more than domestic capacity alone.

Poland and Ghana illustrate different forms of vulnerability to trade-related technology disruptions. Poland's dual role as both importer and integrator of digital systems makes its firms, particularly in manufacturing and logistics,

9 Bloom, N., Bunn, P., Chen, S., Mizen, P., Smietanka, P., & Thwaites, G. (2019). The impact of Brexit on UK firms (No. w26218). National Bureau of Economic Research.

highly sensitive to export controls, platform restrictions, and evolving certification regimes linked to US, East Asian, and EU policies. Despite being embedded in the EU single market, Polish firms rely on external software and infrastructure, and face friction as initiatives like GAIA-X and the European Chips Act remain under development.¹⁰ Ghana, by contrast, represents the challenges faced by emerging digital economies that depend on imported telecom hardware, enterprise platforms, and licensed software to support growth. SMEs are especially vulnerable to tariff hikes, licensing barriers, and software access delays, with limited domestic substitutes. Similar risks affect other African digital exporters, including Nigeria (55.65%), where structural reliance on global platforms amplifies exposure to trade fragmentation.¹¹ France, Malaysia, and the Philippines illustrate how trade conflict disrupts technology access through both regulatory and supply chain channels. France's high impact score reflects tensions between its digital sovereignty agenda and reliance on global tech ecosystems. National rules on data residency and EU-focused procurement impose complex compliance burdens, which are intensified by platform shifts linked to US-China trade tensions.¹² In Southeast Asia, Malaysia faces technology friction due to supply chain exposure. Malaysia's role in global semiconductor production makes it vulnerable to restrictions on chip designs and cloud platforms. Malaysian firms are thus constrained by geopolitical dynamics beyond their control.¹³

10 Del Giovane, et al., 2023. Nature, evolution and potential implications of data localisation...; and European Commission. (2023). The European Chips Act. <https://digital-strategy.ec.europa.eu/en/policies/european-chips-act>

11 World Bank & World Trade Organization, 2023. Digital trade for development...; and UNCTAD. (2021). Digital economy report 2021: Cross-border data flows and development – For whom the data flow. <https://unctad.org/webflyer/digital-economy-report-2021>

12 Del Giovane, et al., 2023. Nature, evolution and potential implications of data localisation...; and UNCTAD, 2021. Digital economy report 2021...

13 World Bank & World Trade Organization, 2023. Digital trade for development...

Ultimately, access to technology is no longer ensured by economic status or national policy alone. It now depends on complex trade relations, licensing constraints, and platform geopolitics. Firms increasingly face disruptions to essential tools (e.g., cloud services and AI libraries) due to policy decisions beyond their control. As digital sovereignty efforts, fragmented standards, and retaliatory restrictions grow, access to technology is shaped as much by geopolitical alignment as by innovation capacity.

3. The regulatory environment

The regulatory environment has become one of the most complex and consequential domains through which trade conflicts disrupt digital strategy. Unlike traditional trade barriers, which are often transparent and quantifiable (e.g., tariffs or quotas), regulatory barriers emerge "behind the border" and operate through technical standards, compliance protocols, and institutional divergence. These non-tariff measures can exert greater economic influence than tariffs precisely because they are harder to contest, measure, or harmonize.¹⁴ In the context of digital strategy, regulatory divergence directly affects how, and whether, firms can scale services, transfer data, protect intellectual property, and secure legal standing in foreign markets.

Studies support the conclusion that regulatory fragmentation is a central constraint on digital trade and firm competitiveness. Barriers related to cross-border data flows, local content requirements, and technology certification significantly reduce services exports, especially

14 Baldwin, R. (2016). *The great convergence: Information technology and the new globalization*. Harvard University Press.

Reconfiguring digital strategies amid trade fragmentation

National and firm-level challenges

among SMEs with limited compliance capacity.¹⁵ In parallel, the implementation of the General Data Protection Regulation (GDPR) has had extraterritorial consequences. While GDPR has raised global data privacy standards, its variable enforcement across jurisdictions has created legal uncertainty and fragmented compliance obligations, particularly for non-EU firms.¹⁶ That is, regulatory measures intended to enhance trust and accountability can unintentionally serve as exclusionary trade practices.

The burden of regulatory fragmentation is intensified by the fact that digital regulations are cross-cutting rather than sector-specific. In turn, such regulations force firms to simultaneously comply with overlapping standards in AI, financial reporting, and data governance across jurisdictions. This institutional decoupling reduces investment efficiency and stifles innovation in emerging technologies such as AI, biotech, and blockchain.¹⁷ Southeast Asia illustrates these dynamics clearly. ASEAN's efforts at regulatory harmonization are undermined by national divergences and geopolitical sensitivities, which delay data exchange and weaken digital supply chain integration.¹⁸ Firms in Malaysia, for instance, face concurrent compliance with local data residency laws, US-China platform divides, and EU-style privacy standards. That level of compliance imposes significant structural and strategic costs. As a result, regulatory alignment is at the forefront of digital competitiveness, requiring legal foresight, jurisdictional

adaptability, and sustained investment in compliance capabilities. Such factors cannot be easily hedged or outsourced in an increasingly fragmented digital economy.

What do executives say?

In the digital economy, the regulatory environment plays a decisive role in shaping how firms scale across markets, manage data, protect intellectual property, and ensure operational continuity. Unlike traditional trade barriers, which tend to be explicit and quantifiable, regulatory barriers emerge behind the border through technical standards, compliance frameworks, and institutional divergence. Such barriers are difficult to contest in trade negotiations and disproportionately affect digital firms operating in multiple jurisdictions. According to survey results, 36.42% of executives indicate that trade conflict has introduced or exacerbated regulatory constraints on their firm's digital strategy. This result suggests that the coherence of the legal environment is now a strategic variable in digital competitiveness.

At the global level, the five most affected countries are Jordan (56.44%), Malaysia (56.30%), Belgium (51.11%), Austria (50.56%), and Spain and Chile (both with 50%). Each of these countries illustrates a different facet of regulatory vulnerability. In Jordan and Malaysia, firms must navigate overlapping and sometimes contradictory legal regimes imposed by trading partners, technology suppliers, and regional blocs. In the European cases, regulatory complexity stems less from institutional weakness than from excessive fragmentation and extraterritorial legal exposure. The latter is particularly so in relation to global data governance norms. Meanwhile, Chile has opted for a hybrid positioning that leads it to

participate in OECD frameworks while engaging in Pacific regional trade. Such positioning exposes its digital landscape to simultaneous pressure from Western data norms and Asia-Pacific digital sovereignty measures.¹⁹

The rest of the top 10 includes the Netherlands (48%), Indonesia (47.54%), Germany (46.88%), and Ireland (46.55%). In the Netherlands and Germany, regulatory complexity arises not from lack of legal clarity but from geopolitical entanglements. As host countries to multinational cloud providers and digital platforms, they are often front-line implementers of contested global data policies.²⁰ German firms in particular are impacted by export controls tied to cybersecurity certifications and AI risk classifications.²¹ Indonesia's challenge arises from dual pressures. First, it needs to uphold national digital sovereignty while remaining compatible with global interoperability frameworks. Such a balance becomes harder to maintain under intensifying trade tensions.²²

Across all these cases, one finding remains clear. Regulatory divergence is no longer an incidental or secondary concern. It is a core issue in digital strategy formulation. As such, it affects everything from product architecture and user interface localization to contract structuring and data pipeline design. Firms must now budget for multi-jurisdiction legal compliance, anticipate rule changes driven by retaliatory trade actions, and maintain

regulatory adaptability as a core capability. Success in such a context depends not only on technological innovation or market demand, but also on institutional intelligence. That is, the ability to interpret, align with, and adapt to a shifting regulatory landscape.

4. Innovation and R&D

Innovation and R&D are at the core of firm-level digital competitiveness. They enable the development of new products, processes, and services that differentiate firms in increasingly saturated markets. Trade openness is important in fostering innovation through knowledge spillovers, access to advanced inputs, and global learning-by-doing mechanisms.²³ In practice, these mechanisms are disrupted when geopolitical tensions limit cross-border flows of information, capital, and technical collaboration. Thus, any erosion of international trade cooperation directly threatens the effectiveness of innovation systems. This is particularly so for those dependent on globally distributed R&D networks.

There is evidence that trade conflict-induced constraints on innovation are not only financial but structural. For instance, while Chinese firms on US entity lists (i.e., classified as a national security issue by US authorities) increased their R&D expenditures by 16.6% in response to export restrictions, they did not experience a corresponding increase in innovation output, such as patents or product launches.²⁴ Such a divergence reveals the limitations of defensive innovation strategies that attempt to substitute domestic efforts for blocked international inputs

15 Ferracane, M., & Marel, E. V. D. (2019). Do data policy restrictions inhibit trade in services?. Robert Schuman Centre for Advanced Studies Research Paper No. RSCAS, 29.

16 Ferracane, M. F., Kren, J., & Van der Marel, E. (2021). The costs of data protectionism. *Big data and global trade law*, 63-82.

17 Cerdeiro, D. A., Mano, R., Eugster, J., & Peiris, M. S. J. (2021). Sizing up the effects of technological decoupling. *International Monetary Fund*.

18 Wiedemann, N., & Leicht, M. (2023). Supply Chain Data Sharing: Evaluating Challenges and Opportunities of EU Data Law. Available at SSRN 4651903.

19 Ministry of Trade and Industry, Government of Singapore. (2025). Overview of the Digital Economy Partnership Agreement (DEPA); and OECD (2025). *Digital Government in Chile: Strengthening the Management of Digital Investments*. OECD Publishing.

20 The Cyber Hive Analysis. (2025). European businesses rethinking cloud dependencies amid geopolitical risk. *The Cyber Hive*.

21 OECD (2024). *OECD Artificial Intelligence Review of Germany*. OECD Publishing.

22 OECD. (2024). *OECD Digital Economy Outlook 2024: Embracing the Technology Frontier*. OECD Publishing.

23 Grossman, G. M., & Helpman, E. (1991). *Trade, knowledge spillovers, and growth*. *European economic review*, 35(2-3), 517-526.

24 Hu, H., Yang, S., Zeng, L., & Zhang, X. (2024). US-China trade conflicts and R&D investment: evidence from the BIS entity lists. *Humanities and Social Sciences Communications*, 11(1), 1-15.

Reconfiguring digital strategies amid trade fragmentation

National and firm-level challenges

or partnerships. The quality and strategic value of innovation declines when global collaboration and specialized imports are no longer reliably accessible.

The vulnerability of innovation to trade conflict is particularly visible in countries situated within larger regional innovation networks. Geopolitical sanctions and policy frictions reduce co-patenting and joint research activities between Western and Eastern Europe.²⁵ Fragmentation of research ecosystems erodes the diversity and quality of innovation pipelines. Fragmentation thus reduces firms' ability to harness external expertise and technological advances. This is not limited to formal R&D partnerships. Informal diffusion channels such as industry conferences, cross-border hiring, and shared research infrastructure are also undermined by trade conflict. Furthermore, planning for innovation becomes increasingly volatile under conditions of trade uncertainty. Firms facing policy ambiguity often delay or scale down irreversible investments.²⁶ Innovation projects, which require multi-year capital commitments and involve considerable sunk costs, are particularly sensitive to this risk.

What do executives say?

Innovation and R&D are increasingly shaped by the pressures of geopolitical fragmentation. 31.96% of high-level executives report that international trade conflicts have adversely affected their organization's innovation and R&D strategies. While this figure is lower than the impact levels recorded for market access and technology acquisition, it nonetheless signals

a structural vulnerability in firms' capacity to sustain long-term innovation cycles under conditions of strategic uncertainty.

Economies that are deeply embedded in cross-border innovation environments show the highest levels of concern in this regard. The Czech Republic ranks first, with 58.33% of executives identifying trade conflict as a significant constraint. Malaysia follows closely at 54.62%, while Indonesia (49.18%), Korea Rep. (48.68%), and China (47.95%) round out the top five. These economies, though diverse in income and innovation capacity, share a common trait. They experience high exposure to international research collaboration, technological co-dependence, and integrated production value chains. The Czech Republic and Malaysia exemplify how deep integration into regional innovation ecosystems heightens exposure to geopolitical disruption. Czech firms, though moderate in domestic R&D spending, rely heavily on EU research funding, cross-border technology transfer, and industrial partnerships linked to Germany and Austria. These ties make innovation performance sensitive to trade tensions such as EU-US data-sharing uncertainties, dual-use export controls, and shifting digital services regulation.²⁷ Malaysia's high vulnerability similarly reflects its role in East Asia's semiconductor and electronics value chains, where local firms act as R&D intermediaries for Japanese, Korean, and Chinese tech leaders. This position leaves them exposed to export restrictions and platform sanctions originating from the US-China technology rivalry, particularly in areas like cloud access, AI tools, and chip design, which directly constrain their innovation capacity.²⁸

25 Makkonen, T., & Mitze, T. (2021). Geo-political conflicts, economic sanctions and international knowledge flows. arXiv preprint arXiv:2112.00564.

26 Bloom, N., Bond, S., & Van Reenen, J. (2007). Uncertainty and investment dynamics. *The review of economic studies*, 74(2), 391-415.

Indonesia represents a distinct but instructive case. As a rising fintech and e-commerce center, its digital innovation environment is more service-oriented and less dependent on hardware co-development. Nevertheless, it is structurally reliant on foreign intellectual property (IP), software platforms, and cross-border investment.²⁹ Restrictions on foreign participation in digital infrastructure, or platform decoupling between Chinese and Western providers, introduce friction into R&D planning.³⁰ In such a context, digital firms depend on an uninterrupted flow of global tools and standards to remain competitive. Furthermore, Korea and China highlight the challenges faced by national innovation systems under trade-induced decoupling. In China's case, aggressive domestic R&D investment has been ramped up to compensate for diminished access to US technologies, but results have been mixed. Research has shown that while firms increase expenditures, the innovation yield measured in patents, collaborations, or commercialized breakthroughs has not always improved proportionally.³¹ Korea faces parallel challenges, with US and Chinese export controls affecting critical sectors such as AI, advanced displays, and 5G infrastructure.³²

Survey results thus highlight that innovation resilience depends on domestic capability or spending intensity as well as on a country's structural position within global research flows and technological dependencies. As trade

tensions multiply and multilateral coordination declines, countries and firms embedded in collaborative environments face heightened exposure to external regulatory shifts, export barriers, and retaliatory policies.

5. Talent acquisition and retention

In an economy increasingly defined by digital capabilities, access to high-skilled human capital has become a central determinant of firm digital competitiveness. Talent acquisition and retention are particularly vulnerable to trade conflicts because they rely on frameworks that enable mobility, cross-border service provision, and international recognition of qualifications. When these frameworks are disrupted, for instance, through visa restrictions or retaliatory immigration policies, the ability of firms to hire globally competitive talent deteriorates. This has both direct operational consequences and long-term strategic implications for innovation, service delivery, and market responsiveness. Evidence suggests that firms operating in jurisdictions affected by trade-related restrictions on labor mobility report longer recruitment timelines and lower productivity. Multinationals exposed to bilateral trade tensions often face hiring delays and higher labor costs due to increased visa compliance, partner country retaliation, or exclusion from cooperative education and training programs.³³ These frictions are particularly harmful in digitally intensive sectors where expertise in cybersecurity, AI, cloud architecture, or data engineering is both scarce and globally contested. Firms unable to source talent externally are often forced into suboptimal

29 OECD (2024). Services Trade in Indonesia: Exploring patterns, policies, and reform Scenarios. OECD Publishing.

30 U.S. International Trade Administration. (2025). Indonesia Digital Economy. Retrieved from <https://www.trade.gov/country-commercial-guides/indonesia-digital-economy>

31 Hu, H., Yang, S., Zeng, L., & Zhang, X. (2024). US-China trade conflicts and R&D investment: evidence from the BIS entity lists. *Humanities and Social Sciences Communications*, 11(1), 1-15.

32 Kim, H., & Cho, J. (2024). The impact of US export controls on Korean semiconductor exports. *KDI Journal of Economic Policy*, 46(3), 1-23.

33 Gordon, J. (2022). In the zone: Work at the intersection of trade and migration. *Theoretical Inquiries in Law*, 23(2), 147-183.

Reconfiguring digital strategies amid trade fragmentation

National and firm-level challenges

domestic hiring or expensive retraining initiatives, which limit their capacity to scale up their digital transformation.

The spatial fragmentation of digital labor markets also limits the use of remote work and online platforms, which were once seen as mitigating tools for talent shortages. Trade conflicts affecting cloud infrastructure, cross-border payments, and data governance indirectly reduce the viability of digital freelancing and remote service delivery.³⁴ This disproportionately affects firms in emerging markets that depend on global talent marketplaces to access specialized expertise. Even when local skills are available, the absence of global exposure and collaboration hinders capability development, reinforcing the digital skills divide between countries. Furthermore, high-skilled migration is often tightly linked to research collaboration, joint ventures, and corporate mobility programs. Digital firms in the US and EU increasingly cite restrictive immigration policies exacerbated by trade tensions as barriers to hiring in AI, biotech, and fintech sectors.³⁵ The erosion of the academic and professional mobility pipelines, moreover, reduces not only the volume but also the diversity of available talent, which undermines organizational adaptability and innovation capabilities. In other words, the intersection of trade and talent mobility reveals a new vulnerability in the digital strategy formulation. Firms that once relied on globally competitive labor markets must now build resilience in an environment of constrained access and politicized hiring frameworks.

34 Berg, J., Furrer, M., Harmon, E., Rani, U., & Silberman, M. S. (2018). Digital labour platforms and the future of work: Towards decent work in the online world. ILO

35 See Zwetsloot, R., Zhang, B., Dreksler, N., Kahn, L., Anderljung, M., Dafoe, A., & Horowitz, M. C. (2021, July). Skilled and Mobile: Survey Evidence of AI Researchers' Immigration Preferences. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (pp. 1050-1059).

What do executives say?

Talent acquisition is a critical dimension of digital competitiveness, yet it remains particularly vulnerable to disruption in a fragmented global trade environment. Trade-induced restrictions on labor mobility include visa tightening, diplomatic frictions, or restrictions on labor-sending countries. Survey results indicate that 31.49% of respondents report international trade conflicts have negatively affected their ability to hire or retain digital talent. While this makes talent the least cited of the five strategic domains analyzed, the absolute level of concern (i.e., reported by nearly one in three respondents) suggests that human capital flows are subject to structural pressures with significant operational implications. The highest reported impact levels come from countries with distinct forms of labor market dependency and openness. Kuwait ranks first, with 56.92% of executives citing trade-related disruptions to talent strategy. The Philippines (45.54%), Cyprus (44.68%), Puerto Rico (44.44%), and Indonesia (44.26%) follow closely behind. These figures highlight a shared vulnerability across economies that rely either on expatriate labor for digital operations or on international labor markets to source specialized digital expertise.

Kuwait's top position reflects its structural reliance on imported talent in sectors such as IT consulting, digital infrastructure, and fintech. Despite policy efforts to nationalize portions of the workforce, the country's digital economy continues to draw heavily from South Asian and Southeast Asian labor markets.³⁶ Trade-related restrictions on labor mobility pose direct threats to workforce continuity. These constraints are

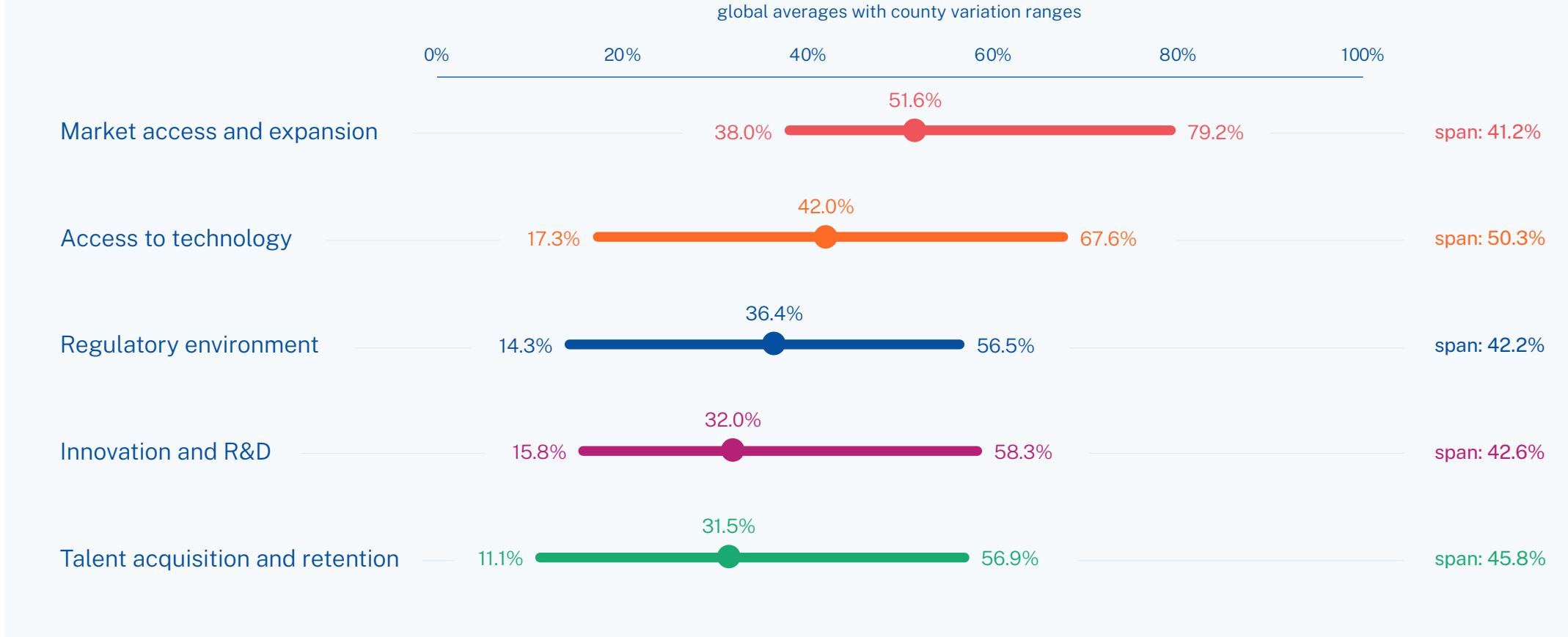
compounded by the increasing politicization of migration policy and the spillover effects of bilateral diplomatic tensions. The Philippines, a global hub for business process outsourcing (BPO), relies on skilled digital professionals to serve clients across North America, Europe, and Asia. Trade-related barriers (e.g., remote work taxes, licensing hurdles, and data flow restrictions) make it harder for firms to maintain contracts and retain talent, especially in smaller BPO centers with limited shock absorption capacity.

Cyprus and Puerto Rico provide another example of small economies reliant on cross-border digital talent. Cyprus is a growing hub for IT services, software development, and digital marketing. Firms in the country depend heavily on internationally mobile professionals. Any disruptions in visa reciprocity or international credential recognition thus undermine the subcontracting pipelines and workforce continuity.³⁷ Similarly, Puerto Rico's digital firms face shrinking talent pools and compliance burdens when international remote work and licensing rules shift. Additionally, Indonesia presents distinct vulnerabilities. Despite its large domestic market, its digital economy, particularly in fintech and logistics tech, is constrained by severe shortages of advanced technical talent. Firms tap into talent within the ASEAN region, yet trade-related restrictions such as hiring bans and cross-border frictions significantly limit access to the skills needed for innovation.³⁸

Other countries that report high impact in this domain include Peru (43.18%), Malaysia (42.86%), Bulgaria (42.03%), Türkiye (41.67%),

and Hungary (41.57%). In Malaysia's case, the dual dynamic of being both a receiver of digital talent and a regional exporter of IT services means that any hindrance to labor mobility resonates through both demand and supply channels. In Türkiye and Hungary, the issue is compounded by economic and political uncertainty, which amplifies the difficulty of attracting and retaining internationally mobile talent even without formal restrictions. While the impact on talent acquisition is more localized than market entry or technology access, its implications are no less strategic. A constrained talent environment not only raises costs and delays project implementation but also limits innovation and digital integration across business units. For AI and platform engineering globally competitive firms, reliance on specialized cross-border expertise is a structural feature of their business models. When those models are disrupted by external policy tensions, substitution is rarely immediate or efficient.

36 ILO (2018). Decent Work Country Programme for Kuwait. ILO country report.


37 IMF (2024). Cyprus: 2024 Article IV consultation – staff report. IMF Publication.

38 Economic Research Institute for ASEAN and East Asia (ERIA). (2024). Enhancing ASEAN's Competitiveness: Talent Mobility and Cooperation in the Digital Economy.

Reconfiguring digital strategies amid trade fragmentation

National and firm-level challenges

Box 2: The impact of international trade conflict on digital strategy: global averages

Rethinking digital strategy amid 2025's trade fragmentation

Digital strategy is no longer defined solely by internal capabilities or innovation diffusion.³⁹ It should now be understood as an externally responsive process, shaped by trade conflict, regulatory fragmentation, and geopolitical alignment. The five domains examined

(market access, access to technology, regulatory environment, innovation and R&D, and talent acquisition and retention) serve as the principal channels through which these external pressures condition firm-level digital competitiveness. Each of these areas connects to broader institutional dynamics and subsequently to digital strategy. Market access and access to technology were the most frequently cited but concerns across the five domains were evenly distributed, globally. Countries like the Czech Republic, Malaysia, and Jordan illustrate that vulnerability to the impact of trade fragmentation is driven less by digital capacity and more by exposure to cross-border flows.

Analysis of the executives' answers shows us that the five domains are interdependent. This means that firms cannot isolate one area without encountering constraints in others. For instance, impacts on market access could cascade into barriers to talent acquisition, innovation and R&D, and/or regulatory compliance. In such a context, firms interested in growing their strategic resilience therefore need to develop capabilities across multiple fronts, including regulatory and geopolitical adaptability and jurisdictional flexibility. For policymakers, supporting digital competitiveness is starting to demand much more than investment in infrastructure or even in skills. Instead, it needs a coordinated trade policy and regulatory

alignment with a view to reducing institutional uncertainty and restoring coherence to the digital economy's operating environment. Trade conflicts, in short, have evolved into a structural condition of the global economy. They shape the geography, processes, and partnerships through which countries and firms implement their digital strategies.

³⁹ Ismail, M. H., Khater, M., & Zaki, M. (2017). Digital business transformation and strategy: What do we know so far. Cambridge Service Alliance, 10(1), 1-35.

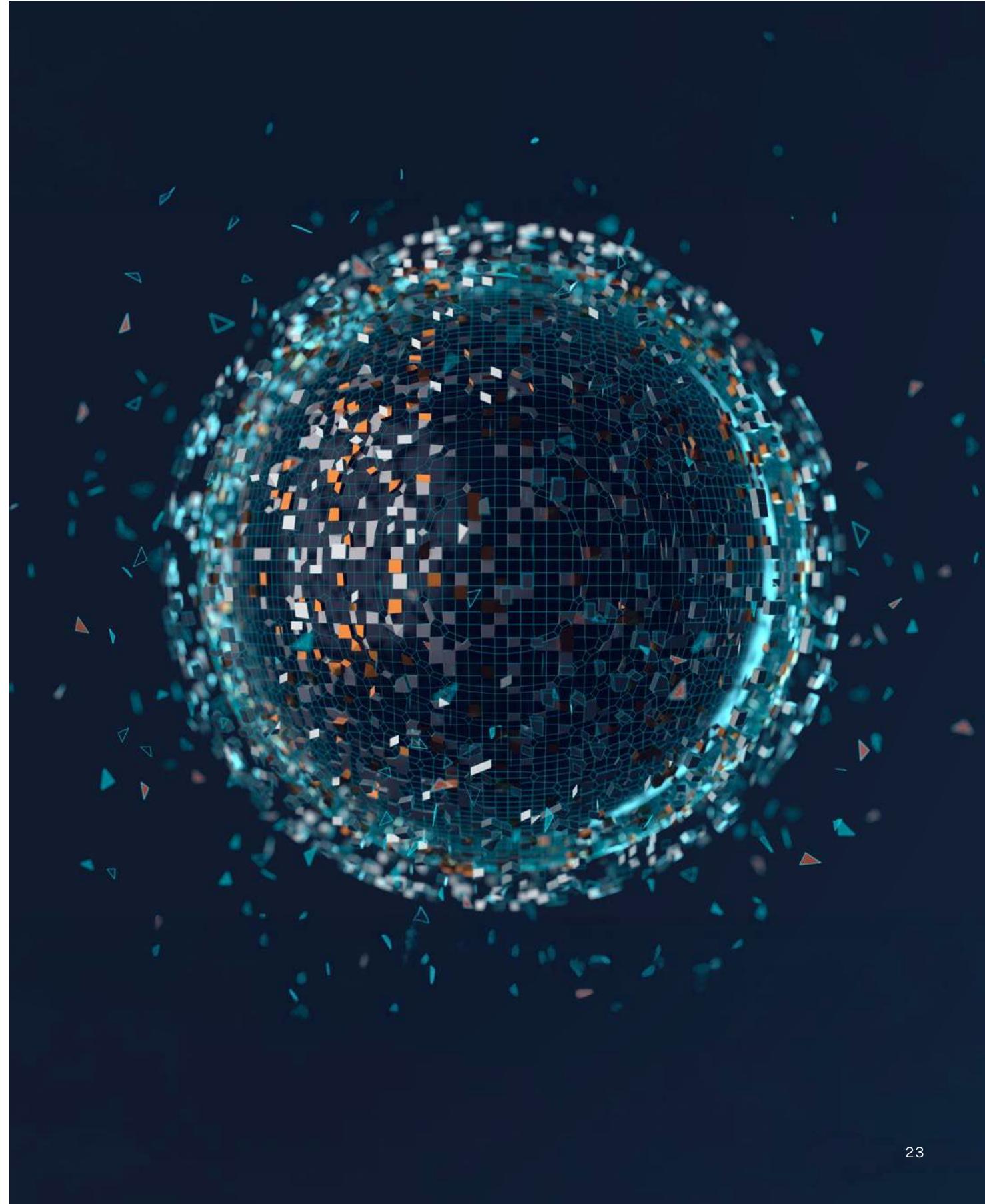
Digital enablers at the industry level

Impacts and trends

Digital competitiveness is central to economic performance and has become a defining component of national resilience in the face of shocks. Therefore, the rapid pace at which industries, companies, and governments are adopting and applying new technologies underscores the need for robust digital policy frameworks, flexible and adaptive business practices, as well as having mobile and highly skilled talent capable of maximizing the benefits of increased digital penetration. From data-driven automation and decision-making to artificial intelligence, digital technologies are reshaping production, services, and governance at an alarmingly disruptive pace across all industries.

The 2025 World Digital Competitiveness Ranking (WDCR) is based on a combination of 40 hard data indicators and 21 survey questions capturing executive perceptions, providing a comprehensive assessment of how economies are adapting to digital transformation. This essay focuses specifically on insights from IMD's Executive Opinion Survey, which collected the perspectives of more than 6,000 senior executives worldwide between January and March 2025. Analyzing these responses by country and sector of activity reveals that digital progress is far from uniform across economies. The resulting digital divide reflects structural disparities both between countries and, more significantly, within them.

The data forming the results of the 2025 WDCR is from international, national, and regional sources.


A core part of the data making up the results of the 2025 World Digital Competitiveness Ranking is the IMD Executive Opinion Survey. Between January and March 2025, we asked 6,162 global executives 21 questions on the business climate in their location. In addition, this year we took the survey and disaggregated responses to one digitally related question (the only question that did not feed into the overall results, incidentally): "How do trade disputes affect the digital strategy of your company?"

We regrouped the answers from executives in each country by the sector of activity of the respondents and then looked for patterns that cross-cut them. We found that economies are not advancing digitally in a uniform way. The resulting digital divide is not only a matter of disparities between countries, but also within them.

These domestic gaps might be geographical – rural and urban areas being very different – or socioeconomic, reflecting variations across income groups. But what jumped out the most is that they are also sectoral, with the various industries experiencing and undertaking digital adoption at vastly different speeds. While some sectors move quickly to integrate digital tools, others lag, creating vulnerabilities for their country's long-term competitiveness.

These disparities matter deeply in the current global context. Ongoing geopolitical tensions are complicating national and company-level digital strategies. Meanwhile, trade disputes, diverging regulatory frameworks, and a growing desire for digital sovereignty – that is, boosting nations or firms' abilities to control their digital environment – are fragmenting global digital governance.

Fabian Grimm
Research Specialist
IMD World Competitiveness Center

Digital enablers at the industry level

Impacts and trends

The result is increased uncertainty and complexity for firms and governments attempting to navigate an increasingly contested landscape. In this environment, understanding how digital enablers impact industries in different ways becomes an essential analytical tool for working out why some industries and countries will continue to benefit from a competitive edge in the digital economy.

Research by the World Competitiveness Center suggests that industry performance and country-level competitiveness in the digital arena are primarily influenced by three critical digital enablers that facilitate technology adoption and assimilation: (1) digital governance and policy frameworks, (2) company capabilities, and (3) human capital.

By analyzing all three, we can move beyond isolated indicators and highlight the systemic conditions through which industries convert digital opportunities into competitiveness. For each enabler, we examine survey-based industry results to understand how executives perceive their digital readiness, see where gaps emerge, and why these differences matter.

In the IMD Executive Opinion Survey, business leaders answer questions using a scale from 1 to 6. A score of 1 indicates that the factor being evaluated does not support competitiveness in its economy, and 6 means that it strongly does. For this analysis only, we have converted these scores into percentages to provide a clearer basis for comparison: a score of 0% reflects complete dissatisfaction, while 100% represents the highest possible level of support for competitiveness according to executives.

By grouping the 21 survey questions into three categories – the key digital enablers – our analysis moves beyond individual data points to highlight systemic strengths and weaknesses that are perceived at the industry level. This is supported by the supposition that the enablers provide the structural conditions through which firms and industries translate digital opportunities into tangible performance gains.

Enabler 1: Digital governance and policy frameworks

Effective digital governance creates the conditions for industries to adopt and scale digital tools. It encompasses the institutional and regulatory environment that shapes how firms can operate digitally, covering areas from cybersecurity to intellectual property protection, and can include public-private partnerships or the management of digital infrastructure. As global digital governance fragments, however, the outcomes of such frameworks diverge across industries.

Our analysis examines six survey questions related to this enabler: management of cities, banking and financial services, public-private partnerships, cybersecurity, laws relating to scientific research, and intellectual property rights. The results reveal significant variation in how executives perceive the quality of digital governance in their economies.

Banking and financial services consistently score highly across industries, with an average satisfaction rate of 62.2%. Executives in finance and insurance report the highest satisfaction at 69.5%, reflecting decades of regulatory attention and investment in digital infrastructure. At the other end of the spectrum, executives in agriculture (58%) and construction (57.8%) are least satisfied, suggesting that existing regulatory and financial frameworks are less responsive to the needs of more traditional sectors. The relative uniformity of scores across industries highlights the long-standing policy priority given to the digitalization of financial services in economies across the world, helping explain why the financial sector has often spearheaded digital adoption. However, the lower satisfaction in agriculture and construction signals potential blind spots: without targeted policies to extend governance benefits more evenly, economies risk entrenching a digital divide between highly digitized and lagging industries.

The small disparities observed in banking services satisfaction extend more prominently to other areas of digital governance, suggesting that institutional attention remains uneven across sectors. Traditional industries like agriculture score notably lower on important governance indicators such as intellectual

property rights protection (61.2% compared to the industry-wide average of 67%) or the management of cities (59.8% versus 65.3%). This suggests that governance frameworks in the digital sphere may be optimized for certain sectors that are considered more profitable at the expense of more traditional ones, such as construction and education.

This pattern extends to opinions on the level of cybersecurity within each field: whereas agriculture, construction and education executives rate cybersecurity slightly below the global average of 60.2%, executives in finance, insurance, and real estate rate their level of cybersecurity at 65.4%, indicating that digital security governance may not adequately address emerging vulnerabilities in sectors undergoing digital transformation and may be overly focused on protecting the industries which have already undertaken such digitalization. This could also reflect cybersecurity policies that have evolved reactively around high-value sectors rather than proactively across the broader economy.

Public-private partnerships reveal further asymmetries. Transport and storage executives rate this dimension at 65.5%, above the cross-industry average of 62.6%, likely reflecting the infrastructure-intensive nature of the sector and its reliance on government coordination in areas such as port digitalization or smart traffic systems. Construction, hospitality, and manufacturing show similar levels of satisfaction, indicating that public investments are perceived as more effectively implemented in infrastructure-heavy industries. By contrast, satisfaction scores are lowest in the electricity, gas, and water sectors; industries that, despite being partly nationalized, often face complex governance structures that slow innovation. This could suggest that governments may prioritize PPPs where returns are most visible, leaving less profitable sectors unsupported.

Divergent regulatory approaches among major economies further complicate governance outcomes. The European Union's focus on data protection through frameworks such as the GDPR provides robust consumer safeguards but imposes compliance burdens that can weigh heavily on smaller firms and certain industries. Meanwhile, competition between the United States and China over technology exports has introduced new trade restrictions, which further fragment markets and increase uncertainty. As

this regulatory divergence deepens, industries operating across borders face growing complexity that risks slowing innovation diffusion and scale, two critical drivers of digital competitiveness.

Enabler 2: Company capabilities

Company capabilities refer to firm-level organizational attributes that enable digital adoption, literacy, and competitiveness more broadly. It includes indicators such as company agility, knowledge transfer, use of big data, access to venture capital, recognition of opportunities and threats, and flexibility and adaptability. Analysis of these six indicators reveals that digital capabilities are unevenly distributed across industries, with important implications for national competitiveness strategies.

The most striking finding is the universal challenge faced by firms when trying to access venture capital to develop their activities. The executive opinion survey suggests that every industry struggles in this dimension, with satisfaction scores ranging from a low of just 43.6% in the arts, entertainment, and recreation industries to a high of only 59.6% in accommodation and food services. Manufacturing, despite being the largest sector in our sample with over 1,100 respondents (21% of the total), scores just 51%. Executives in professional, scientific, and technical services, which should theoretically attract innovation capital, also report just 52.6% satisfaction with their access to venture capital. Similarly, in the IT and communications sectors, the core of the digital economy, executives' satisfaction is below average at 59%.

This industry-wide dissatisfaction points to a systemic financing gap. Venture capital remains concentrated in a few geographic hubs (like Silicon Valley) and narrow technology fields such as software or fintech, leaving most traditional industries digitally undercapitalized despite their potential for transformation. Digitalization in sectors such as manufacturing, agriculture, or transport requires financing models aligned with longer time horizons and higher capital intensity, yet current mechanisms are structurally misaligned with these needs. In short, venture capital markets appear ill-suited to enabling large-scale digital transformation beyond the startup ecosystem.

Company agility shows more variation and reveals some

unexpected patterns that challenge common assumptions about digital readiness. Executives in the transport and storage industries scored 63.4% in company agility, matching manufacturing and slightly ahead of the finance, insurance, and real estate sector, which all exceeded the industry-wide average of 61.2%. Construction also achieves 60%, a strong result for a sector often characterized as resistant to change. These findings could suggest that operational pressures in logistics and global supply chains have driven higher organizational agility in sectors previously believed to be digitally conservative. The contrast with education is instructive: despite its knowledge-intensive nature, executives in education rate their sector just 58% on agility, likely reflecting frustration with institutional rigidity and regulatory constraints rather than the nature of the work itself. Ultimately, these results suggest that digital competitiveness depends as much on organizational flexibility and decision-making structures as on access to new technologies themselves.

Knowledge transfer presents perhaps one of the most concerning patterns for long-term digital competitiveness. In the education sector, responsible for developing and disseminating knowledge across society, executives only score 55.4% satisfaction with their ability to do that effectively, below the cross-industry average of 57.3% and behind professional, scientific, and technical services (56.4%). This result underscores structural rigidity with deep implications: if educational institutions face difficulty transferring knowledge within their own systems, their ability to prepare students and professionals for rapidly evolving digital careers is inherently limited. The challenge extends across the economy. Agriculture scores 55%, manufacturing 56.8%, and even the IT and communications sector, which is expected to lead in digital diffusion, registers just 58.2% from its executives. Such scores could point to a systemic weakness in moving knowledge from research to application, from innovators to adopters, and from early experimentation to broad operational use. In this sense, weak knowledge transfer mechanisms constrain the translation of national R&D capacity into productivity gains, particularly in traditional sectors where institutional collaboration is limited or fragmented.

The adoption of big data analytics shows clear sectoral stratification that correlates with both the availability of data and the clarity of use cases. For instance, the manufacturing sector

has clear potential applications for big data use in predictive maintenance, quality control, and supply chain optimization. However, executives in the field only score a satisfaction of 55.8%, below the industry-wide average, potentially indicating dissatisfaction with data availability. On the other hand, the sector most satisfied with its use and application of big data is accommodation and food services, which outperforms expectations at 62.6%, possibly reflecting the sector's intensive collection and use of customer and operational data. It is interesting to note that, once again, executives in knowledge-intensive sectors such as education and scientific research are unhappy with the lack of data-driven decision-making that occurs in their field, scoring below the industry-wide average.

Cross-country comparisons reinforce the dynamics explored and support these arguments. In Germany's manufacturing sector, for example, executives report strong operational capabilities: employee training (72%), technology development (70%), and digital skills (72%) all exceed global averages and reflect decades of investment in vocational training, close university-industry collaboration, and structured initiatives to embed digital skills in production systems. Yet, despite this, weaknesses emerge in company capabilities. Most notably, venture capital access stands 7 percentage points below the average at just 44% and knowledge transfer scores 52%, versus 57% globally. This dual profile reveals a critical insight: strong institutional frameworks for workforce development and operational excellence don't automatically create innovation ecosystems at the company level or entrepreneurial dynamism. Germany excels at helping established manufacturers adopt and apply digital technologies, but struggles to generate funds for and scale disruptive digital innovations.

In the United States, the landscape of company capabilities shows even more variations between industries and, implicitly, between regions. IT and communications executives rate venture capital access at 64%, the highest value in the sample, and knowledge transfer at 66%, nearly ten percent above the global average. These high scores reflect the strength of innovation clusters such as Silicon Valley, Seattle, and Austin, where dense ecosystems of investors, accelerators, universities, and experienced entrepreneurs reinforce one another. However, traditional sectors tell a different story. US manufacturing

executives record only 42% satisfaction with venture capital access and 50% for big data analytics, below global averages and well under leading US industries. This internal divergence reflects both geographic concentration of digital capabilities and sector-specific institutional development. Technology hubs benefit from dense networks of investors, accelerators, universities, and experienced entrepreneurs. However, traditional industries in other regions lack these ecosystems, creating an internal digital divide, even within one of the world's leading digital economies.

These findings underscore that company capabilities are a foundational yet uneven enabler of digital competitiveness. They determine how effectively firms can absorb, adapt, and scale digital innovations, but also reveal structural asymmetries that shape national digital performance. Across industries, the persistent financing gap in venture capital and the systemic weakness in knowledge transfer point to a broader institutional misalignment between the digital economy's needs and existing market mechanisms. Meanwhile, differences in agility and big data adoption show that organizational flexibility and managerial culture remain critical to turning technological potential into productivity gains.

At the national level, contrasting examples highlight two distinct models of capability development. Germany's strength in skills formation and operational excellence demonstrates the power of long-term institutional investment but also exposes the limits of execution-driven systems that struggle to foster entrepreneurial experimentation. The United States, by contrast, illustrates how innovation ecosystems (which are dense, regionally concentrated networks of capital, talent, and research) can drive digital leadership in specific industries while leaving others behind. Both cases reveal that digital competitiveness increasingly depends not just on the presence of technology or talent, but on the ability of firms and institutions to integrate them into coherent, agile systems of innovation. Building inclusive digital economies requires fostering the organizational, financial, and knowledge-transfer mechanisms that allow all sectors, not just digital frontrunners, to participate in and benefit from technological progress.

Enabler 3: Human capital

Human capital encompasses the workforce skills and talent mobility necessary to develop digital competencies. Our analysis examines six indicators: employee training, digital skills, immigration laws, attitude towards globalization, foreign highly skilled personnel, and international experience of senior managers. The patterns that emerge challenge several conventional assumptions about which sectors possess strong digital human capital and reveal where economies risk structural skill mismatches.

Executive satisfaction with digital skills as an enabler of competitiveness shows a surprising hierarchy, with many industries scoring high marks compared to other indicators. Not surprisingly, IT and communications score amongst the highest with 70.4%, surpassed only by the transport industry (71.8%) and the finance, insurance, and real estate sector (71%). Even within more traditional sectors, satisfaction with digital skills is high with manufacturing (68.8%), construction (67.6%), and education (66.8%), all relatively close behind. The relatively strong performance of infrastructure-intensive sectors suggests a broader trend: industries with tangible efficiency gains from digitalization invest more successfully in workforce digital capabilities than those where the benefits are diffuse or harder to quantify.

On the other hand, executives' assessment of employee training reveals concerning disparities that hint at the existence of a growing digital divide with regard to human capital. With a cross-industry average of 62.3%, three industries stand out as notable weak performers in 2025: agriculture (60.6%), services (58%), and most concerningly, education (55.2%). Though such results are prone to the personal bias of respondents, the latter score is somewhat concerning, as it suggests that the sector responsible for training young professionals is itself underinvesting in digital skill development. This potential institutional weakness could have important cascading effects. If educators lack digital proficiency and pedagogical models remain outdated, they cannot effectively prepare future talent for digitally intensive careers. The issue here is not simply one of technical order through skill acquisition, but rather about the capacity for continuous learning and adaptation, which are attributes central to resilience in the face of technological change.

The strongest performers in employee training provide valuable contrasts. Transport and storage lead with 67.2%, followed by manufacturing (65.8%) and accommodation and food services (65.6%). These sectors face direct operational consequences from inadequate training, such as safety risks, service failures, or quality lapses, which create powerful incentives for workforce investment. Education, by contrast, experiences more diffuse and delayed feedback from training gaps, reducing the urgency for reform and modernization.

Recruitment of foreign highly skilled personnel shows the widest variation of any human capital indicator, exposing how industries integrate (or fail to integrate) into global talent markets. Agriculture ranks lowest at 51.4%, reflecting the relative geographic immobility of agricultural work and challenges in attracting international expertise. Construction follows at 59.4%, again showing how location-bound sectors struggle with global recruitment. In contrast, accommodation and food services reach 64.4%, benefiting from the global nature of hospitality careers. IT and communications score 59.2%, and professional, scientific, and technical services slightly lower at 58.6%, suggesting that immigration restrictions and regulatory hurdles constrain even knowledge-intensive and internationally integrated sectors.

International experience of senior managers follows a similar pattern. Accommodation and food services (63.0%) and transport (63.4%) lead agriculture (56.0%) and arts and entertainment (53.2%) by significant margins. The notion of international experience within an industry is extremely relevant because internationally experienced leadership correlates with awareness of global best practices, openness to external innovation, and access to transnational networks that facilitate knowledge transfer. Industries whose leadership has global exposure are better positioned to identify and adopt digital innovations, regardless of their origin. Attitudes toward globalization, while less dispersed, still vary meaningfully and range from 62.2% in arts and entertainment to 70.0% in accommodation and food services. This consistency across industries suggests that while executive sentiment about global integration remains generally positive, practical integration through skilled migration and cross-border managerial experience is less uniform.

Country examples illustrate how these dynamics play out in practice. Poland's professional, scientific, and technical services sector demonstrates both the progress and constraints of human capital development in emerging economies. Digital skills reach around 68%, close to Germany's 72%, and communications technology infrastructure scores near 74%, reflecting sustained investment in STEM education and an expanding technology services base. Yet venture capital access remains low at 36%, international managerial experience around 48%, and foreign talent recruitment approximately 56%. Poland's trajectory shows how strong domestic capability development can narrow execution gaps with advanced economies, but integration into global innovation networks and capital flows remains limited.

Japan offers a contrasting view. Executives rate technology development at 82% and digital skills at 72%, underscoring world-class technical education and engineering capacity. However, company agility is just 40% (versus a 61% global benchmark), decision-making using big data analytics is 39% (versus 56.2%), and the international experience of senior managers is a mere 30%. Knowledge transfer (50%) and attitudes toward globalization (57%) also fall below global averages. Hierarchical management cultures, consensus-oriented decision-making, and limited international exposure constrain Japan's ability to translate technical proficiency into organizational adaptability. An interesting takeaway from the Japanese scenario is that technical expertise alone is insufficient; digital competitiveness also requires adaptability, cross-cultural fluency, and institutional openness to experimentation and failure.

Human capital remains one of the most decisive enablers of digital competitiveness, but also one of the most complex. The data suggests that digital skills and training investments are unevenly distributed across sectors, often favoring those with immediate operational incentives. Meanwhile, barriers to global talent mobility and limited international experience constrain cross-border learning and innovation diffusion. Countries like Germany and Japan show that technical excellence does not guarantee agility, while emerging economies like Poland reveal that domestic capability-building must be paired with international integration to achieve lasting competitiveness. Building human capital for the digital age, therefore, requires more than skill accumulation; it demands institutional

adaptability, openness to global exchange, and leadership capable of bridging technological potential with strategic execution.

Four sectoral trends shaping digital policy

Several cross-cutting themes emerge from the analysis of the role and impact of digital governance, company capabilities, and human capital as key enablers of digital competitiveness. From the insights of executives, here are four sectoral trends that are particularly relevant for future digital policy.

1. Infrastructure-intensive industries outperform expectations.

Transport, construction, and manufacturing display high digital readiness across communications technology, digital skills, and company agility. For instance, executives in construction rate their industry at 72.4% in communications technology, 67.6% in digital skills, and 66.4% in flexibility and adaptability. Operational imperatives such as efficiency, safety, and cost control may play an important role in accelerating digital adoption where the benefits are immediate and measurable. This challenges the long-standing narrative that traditional industries are resistant to digital transformation and illustrates that well-defined incentives and proven business cases can drive significant progress even in more conservative or manual sectors.

2. Knowledge-based sectors are underperforming despite their strategic importance.

According to executives in education, the industry is underperforming compared to other economic sectors in a few key metrics such as employee training (55.2%), knowledge transfer (55.4%), and digital skills (66.8%), revealing some important structural bottlenecks in the way economies address human capital accumulation in one of the most important industries for digital proficiency: teaching and education. As the sector tasked with enhancing human capital, its perceived inability to modernize could heavily undermine broader

digital readiness. The issue appears institutional rather than technological: rigid governance, static employment structures, and risk-averse cultures inhibit reform even where awareness and resources exist. Without addressing these systemic barriers, economies risk reinforcing a digital skills deficit that limits innovation diffusion across all industries.

3. The lack of venture capital availability is a universal constraint.

Globally, executives across all industries demonstrate dissatisfaction with their access to venture capital. In fact, of all 21 survey questions, the global average for venture capital availability is the lowest in the sample (50.6%), nearly ten points behind executives' satisfaction with the availability of company funding for technological development (59.4%). Even leading industries such as IT and communications (50.8%), professional, scientific, and technical services (52.6%), and finance, insurance, and real estate (51.4%) report dissatisfaction. This could hint at a structural misalignment between existing venture capital models, which are generally designed for asset-light and rapidly scalable startups, and the capital-intensive realities of digital transformation in manufacturing, transport, or agriculture. Unless financing mechanisms evolve to support longer innovation cycles and physical investment needs, digital transformation could risk remaining concentrated in a narrow set of industries.

4. Governance frameworks remain uneven across sectors.

Banking, finance, and infrastructure benefit from decades of coordinated regulation, public investment, and institutional support for digital initiatives. In contrast, emerging digital sectors and transforming traditional industries face fragmented governance characterized by unclear regulatory pathways, weak IP protection, and limited public-private coordination. This unevenness generates uncertainty and slows digital diffusion beyond the most regulated sectors. Expanding governance frameworks to support a wider range of industries could strengthen national digital resilience and ensure more inclusive competitiveness.

Digital enablers at the industry level

Impacts and trends

We can see from these global patterns that different industries experience digital enablers in different ways. For business leaders, understanding both which industries and countries are successfully addressing specific digital challenges can inform partnership strategies, investment decisions, and talent development priorities. Recognizing that multiple pathways to competitiveness exist allows for learning from diverse models rather than assuming a single approach works universally.

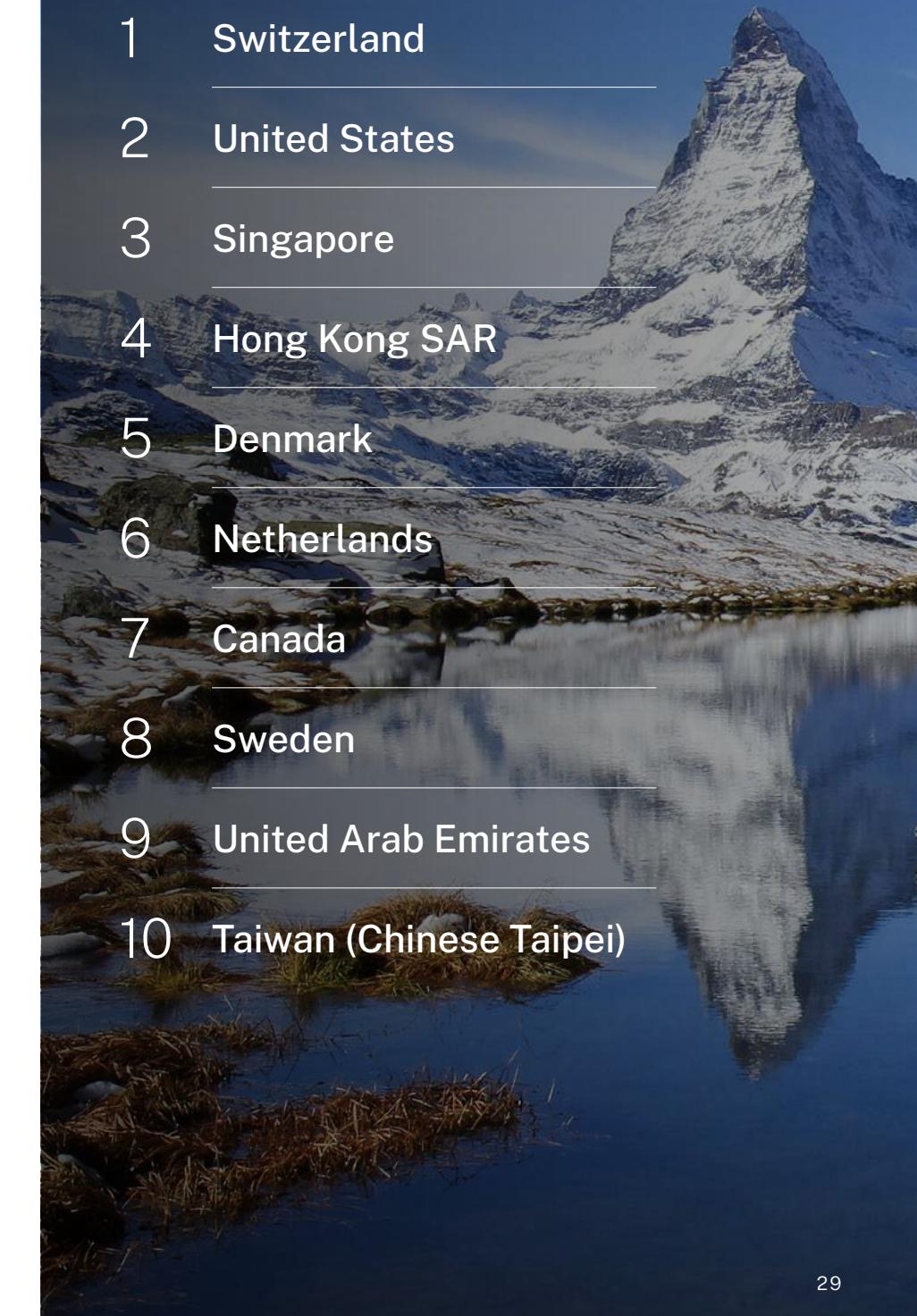
Ultimately, digital competitiveness in a fragmented world depends on bridging divides. Success lies not in achieving headline scores in isolated sectors but in ensuring digital transformation spreads broadly, inclusively, and sustainably

across the economic landscape. Economies that combine robust governance, adaptable companies, and continuous human capital development across all industries, not just priority sectors, will prove more resilient than those dependent on narrow excellence, however exceptional that excellence may be.

As geopolitical tensions continue to reshape the institutional environment for digital strategy, this broad-based resilience becomes ever more critical for sustained digital competitiveness.

An analysis of the 2025 World Digital Competitiveness Ranking's Top 10

Switzerland climbs to the top of the 2025 edition of IMD's World Digital Competitiveness Ranking (WDCR), advancing one position from the previous year. It is followed by the US, which makes a significant leap of two positions to claim second place, and Singapore, which moves down two spots to complete this year's podium. Hong Kong SAR continues its ascent, gaining three positions to rank fourth, while Denmark slips two places to fifth. The Netherlands shows a solid improvement, moving up two positions to sixth overall. A notable new entrant to the top 10 is Canada, which jumps an impressive six positions to rank seventh. Sweden, however, experiences a decline, dropping three spots to eighth. The United Arab Emirates also enters the top 10 for the first time, climbing two positions to ninth. Finally, Taiwan (Chinese Taipei) moves down one position to complete the top 10. Korea Republic (previously sixth) and Norway (previously 10th) drop out of the top 10 in 2025, losing nine and three positions, respectively.


Switzerland secures the top spot in the 2025 WDCR, driven by its world-leading performance in the Knowledge factor, where it maintains first position, and a significant three-position jump in the Future Readiness factor to second place. While its Technology factor ranking saw a slight decline of three positions to seventh, the country's overall profile remains exceptionally strong and balanced. At the sub-factor level, Switzerland demonstrates leading performance in Talent (second), Training & Education (fifth), and Business Agility (third). Its ascent in Future Readiness is underpinned by improvements across its components, showcasing a society and business environment that is highly prepared for digital transformation. Switzerland's key strengths are deeply embedded in its human capital and institutional quality. It ranks first globally for the quality of employee training, the effectiveness of its scientific research legislation, its robust intellectual property rights, and its unparalleled capacity for knowledge transfer between companies and universities. However, the slight dip in the Technology factor can be attributed to relative declines in the Regulatory Framework (seventh, down from second) and Capital (15th, down from 11th) sub-factors. Specific areas for improvement include enforcing contracts, where Switzerland ranks 40th, and the penetration of wireless broadband, where it places a surprisingly low 55th.

The US makes a significant leap into second place overall, climbing two positions from 2024. This strong performance is driven by its undisputed leadership in the Technology factor, where it ranks first globally, and a strong showing in the Knowledge (sixth) and Future Readiness (eighth) factors. The US's core strength in Technology is built on its top-ranked Capital sub-factor, which is fueled by the world's largest pool of AI private investment (first), readily available funding for technological development (sixth), and a vibrant venture capital market as perceived by its executives (fourth). Its natural leadership in the Scientific Concentration sub-factor (second) is evidenced by top five ranks in five out of seven indicators, including second positions in both AI-related patent publications and the number of robots in education and R&D. At the indicator level, the US displays many strengths, including the world's largest volume of internet retailing (first), the highest protection against software piracy (first), and the world's best computer science education index (first). However, the country's overall performance is moderated by notable weaknesses in areas related to social adaptation and talent accessibility. It ranks poorly for its attitudes toward globalization (61st) and faces challenges with its immigration laws, which are perceived as a barrier to attracting talent (ranking 64th). Other areas for improvement include the quality of employee training (39th) and public expenditure on education (14th), suggesting that while the nation excels at high-end innovation, it could face future challenges linked to an inadequate framework for talent attraction and retention.

After leading the ranking in 2024, **Singapore** slides to third position in the 2025 WDCR. Despite this shift, it remains a digital powerhouse, securing top-tier rankings across all three factors: Knowledge (fourth), Technology (second), and Future Readiness (sixth). Singapore's performance is remarkably balanced, ranking in the top 10 for six of the nine sub-factors, and demonstrates exceptional strength in its Regulatory Framework (first), a testament to its business-friendly digital environment. At the indicator level, Singapore's strengths are widespread. It tops the number of high-tech patent grants per capita worldwide (first) and achieves the second rank for both its PISA math educational

The top 10 countries

- 1 Switzerland
- 2 United States
- 3 Singapore
- 4 Hong Kong SAR
- 5 Denmark
- 6 Netherlands
- 7 Canada
- 8 Sweden
- 9 United Arab Emirates
- 10 Taiwan (Chinese Taipei)

An analysis of the 2025 World Digital Competitiveness Ranking's Top 10

assessment scores and the effectiveness of its banking and financial services. Additionally, Singapore demonstrates high levels of institutional support for IT Integration in its economy (sixth) with strong performances in E-government scores (third) and the government's cyber security capacity (third). Its business environment is further characterized by highly agile companies (ninth) and a positive attitude towards globalization (eighth). The decline in its overall rank can be mostly attributed to Singapore's weaker performance across all three sub-factors in Future Readiness, including a 10-position drop in both the Adaptive Attitudes and Business Agility sub-factors. Such results can be explained by lagging levels of internet retailing (28th), low perceptions of firm flexibility and adaptability (26th), low investment in telecommunications (61st). Other persistent weaknesses include its low total public expenditure on education (63rd) and a comparatively low proportion of female researchers (46th).

Hong Kong SAR continues its impressive upward trajectory in digital competitiveness, climbing three places to rank fourth overall. This strong performance in 2025 is built on top five positions in the Technology (third) and Knowledge (fifth) factors, complemented by a solid 10th place in Future Readiness, a five-position increase from the previous year. Hong Kong's technological prowess is highlighted by its first place ranking in the Technological Framework and Adaptive Attitudes sub-factors, as well as top 10 positions in the Talent (fifth), Training & Education (third), and Business Agility (Seventh) sub-factors. Hong Kong demonstrates world-leading scores in the Talent sub-factor, with top ranks in PISA math scores (fourth), the international experience of its managers (sixth), and scientific and technical employment (seventh). Its digital competitiveness is further supported by its large proportion of high-tech exports (second) coupled with the world's highest percentage of graduates in the sciences (first). At the indicator level, Hong Kong excels in several key areas, including the ease of starting a business (fourth), and the quality of its banking and financial services (eighth). Its Adaptive Attitudes scores are also a major asset, ranking first globally in this sub-factor, driven by the second highest smartphone possession rate and a highly positive attitude toward globalization (second). Despite these strengths, Hong Kong continues to fare poorly under the IT Integration sub-factor (29th), particularly in areas linked to institutional

strength as demonstrated by low scores concerning government cybersecurity capacity (44th) and the legal framework for privacy protection (49th).

Denmark slips two positions to fifth in the 2025 ranking but remains one of the world's most digitally advanced economies. Its performance is balanced, with top 10 rankings in all three factors: Future Readiness (first), Technology (fifth), and Knowledge (ninth). Denmark's top position in Future Readiness is a testament to its highly adaptive society and agile business sector. It leads the world in E-Participation (first) and E-Government (first), demonstrating a seamless integration of digital tools into civic and public life. The Business Agility sub-factor (second) is another major strength, with Danish companies ranking fourth for their agility and second for their use of big data and analytics according to executives. In the Technology factor, Denmark excels in its Regulatory Framework (second) and boasts the highest number of secure internet servers per capita globally (first). The country's strengths are further evidenced by its top ranking for country credit rating and the quality of employee training (second). The minor drop in the overall ranking is partly due to a relative decline in the Knowledge factor, where weaknesses persist in the number of graduates in sciences (25th) and the proportion of female researchers (35th). Scientific Concentration appears to be a consistent area for improvement, with weak scores in R&D productivity by publication (47th) and a low number of high-tech patent grants (35th).

The Netherlands gains two ranks to secure sixth place in 2025. This advancement is driven by consistent improvements across all three digital factors, with the biggest gain achieved in Technology (fourth, up from eighth) followed by Future Readiness (fourth, up from seventh) and a solid seventh place in the Knowledge factor (up from ninth). The country's technological infrastructure is world-class, reflected in its sixth place rank for the Technological Framework sub-factor, which includes having the third most secure internet servers per capita. The Netherlands also boasts an exceptional environment for Capital, ranking third in this sub-factor, supported by the second largest IT & media stock market capitalization as a percentage of GDP. In Future Readiness, the country excels in Adaptive Attitudes (third) and IT Integration (ninth), with its population showing a highly positive attitude towards globalization (third) and a high degree

of tablet possession (ninth). The Knowledge factor is bolstered by the Talent sub-factor (sixth), with managers possessing significant international experience (fourth) and the economy demonstrating a strong ability to attract foreign highly skilled personnel (seventh). Despite these strengths, the Netherlands shows room for improvement in Training & Education (25th), particularly concerning the quality of employee training (16th). Other weaknesses include a relatively low number of graduates in the sciences (45th) of which few are women (49th).

Canada makes a remarkable entry into the top 10, jumping six positions to seventh place overall. This significant leap is primarily fueled by a substantial improvement in the Future Readiness factor, climbing 10 positions to ninth, and in the Knowledge factor, where it climbs from sixth to second place. At the sub-factor level, Canada demonstrates world-leading performances in Training & Education (first), Talent (third), and IT Integration (fifth). The country ranks second for the percentage of women with degrees and sixth for higher education achievement, showcasing a highly educated workforce. The country excels in talent appeal, with a high net flow of international students (fifth) and a strong ability to attract foreign highly skilled personnel (ninth), in part due to its high levels of scientific and technical employment (third). In the Technology factor, Canada showcases a dynamic environment that attracts capital (second in the sub-factor) with significant private investment in AI (fifth) and access to venture capital that satisfies business executives (seventh). Further strengths at the indicator level include the government's cyber security capacity (fourth), and the knowledge transfer occurring in the economy (third). Canada's primary weaknesses lie in specific infrastructure indicators, such as wireless broadband penetration (59th) or its low proportion of high-tech exports (33rd). Further improvements could also be made in contract enforcement (53rd) and the number of AI policies passed into law (32nd).

Sweden experiences a three-position drop to eighth place in the 2025 ranking. Despite this decline, it retains strong digital attributes across all digital factors, particularly in Knowledge where it ranks third and achieves top 10 positions in all three sub-factors. Sweden's most notable attributes include high public expenditure on education (third), high quality employee training (fourth), and its scientific and technical employment (first). In the

An analysis of the 2025 World Digital Competitiveness Ranking's Top 10

Technology factor, Sweden remains 10th, showcasing strengths in intellectual property rights (11th), its banking and financial services (fourth), the level of AI investment (fourth) as well as the country's credit rating (first). However, Sweden's overall rank was impacted by a sharp decline in the Future Readiness factor (down to 11th from fourth). The most notable drop is observed in the Business Agility sub-factor, falling from ninth to 16th as a result primarily of declining business sentiment relating to the detection of opportunities and threats (41st) and entrepreneurial fear of failure (23rd). At the indicator level, while the country remains a leader in the use of big data and analytics (eighth), perceptions of company agility have weakened (16th). Other challenges include a relatively low number of female researchers (38th) and low investment in telecommunications (53rd), which could hinder future infrastructure development.

The United Arab Emirates (UAE) enters the top 10 for the first time, climbing two spots to ninth place. This achievement is a testament to its focused strategy on digital transformation, reflected in outstanding performances in the Future Readiness (fifth) and Technology (sixth) factors. The UAE's key strength lies in its world-leading Talent sub-factor (first), where it ranks first for the international experience of its managers, first for digital/technological skills, and second for attracting foreign highly skilled personnel. This ability to attract and retain top global talent is the foundation of the UAE's digital economy. In the Technology factor, the UAE excels in its Regulatory Framework (fourth) and Capital environment (ninth). Its business-friendly policies include immigration laws that are conducive to a more productive economy (second) and the development and application of technology (third). Further strengths include the quality of public-private partnerships (first) and the highly positive attitudes of the business world to globalization (fourth). Despite these strengths, the UAE's performance in the Knowledge factor (12th) is held back by a weaker Scientific Concentration sub-factor (34th), performing relatively lower in R&D expenditure and personnel per capita compared to other top digital economies. At the institutional level, further improvements should be considered in increasing total public spending on education (51st) as well as a sharper focus on passing AI policies into law (57th) and implementing privacy protection laws (40th) to increase the general level of cyber security of the population.

Taiwan (Chinese Taipei) completes this year's top 10, though slipping one position from 2024. It continues to be a digital leader, particularly in the Future Readiness factor, where it ranks an impressive third globally. This is driven by its world-leading Business Agility sub-factor (first), with its companies ranking second for agility and third for their use of big data and analytics. Taiwan also demonstrates strengths in the Technology factor (11th), supported by a top-tier capital environment (fifth) that includes the world's largest IT & media stock market capitalization as a percentage of GDP (first). Its technological prowess is further highlighted by its high rank for high-tech exports (fourth). The Knowledge factor (16th) remains the area with the most room for improvement, although it performs strongly in Training & Education (sixth) and Scientific Concentration (10th), boasting the second highest R&D personnel per capita. Key weaknesses that temper its overall rank include a low proportion of female researchers (56th), a high pupil-teacher ratio in tertiary education (51st), and persistent challenges in the regulatory space, ranking last (68th) for having AI policies passed into law, indicating a need to formalize its governance of emerging technologies.

Rankings in a Nutshell

The 2025 IMD World Digital Competitiveness Ranking

The IMD World Digital Competitiveness Ranking presents the 2025 overall ranking for the 69 economies covered by the Center. The economies are ranked from the most to the least competitive. The Scores shown to the right are actually indices (0 to 100) generated for the unique purpose of constructing charts and graphics. The final column shows the improvement or decline from the previous year.

2025 Digital Competitiveness Ranking

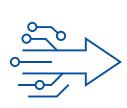
		Score
01	Switzerland	100.00 ↗ 1
02	USA	99.29 ↗ 2
03	Singapore	99.18 ↙ 2
04	Hong Kong SAR	97.79 ↗ 3
05	Denmark	97.23 ↙ 2
06	Netherlands	96.82 ↗ 2
07	Canada	96.19 ↗ 6
08	Sweden	95.42 ↙ 3
09	UAE	93.38 ↗ 2
10	Taiwan (Chinese Taipei)	93.12 ↙ 1
11	Finland	91.12 ↗ 1
12	China	87.79 ↗ 2
13	Norway	87.34 ↙ 3
14	Iceland	87.28 ↗ 5
15	Korea Rep.	86.55 ↙ 9
16	Ireland	85.54 ↗ 1
17	Lithuania	84.30 ↗ 5
18	Germany	84.25 ↗ 5
19	United Kingdom	83.65 ↙ 1
20	Qatar	82.35 ↗ 6
21	France	81.91 ↙ 1
22	Saudi Arabia	80.09 ↗ 5
23	Australia	79.90 ↙ 8
24	Austria	79.85 ↗ 1
25	Belgium	78.52 ↙ 4
26	Estonia	77.84 ↙ 2
27	Luxembourg	76.68 ↗ 2
28	New Zealand	75.67 ↗ 5
29	Spain	75.43 ↙ 1
30	Japan	74.92 ↗ 1

		Score	
31	Latvia	74.87 ↗ 7	
32	Bahrain	74.65 ↙ 2	
33	Portugal	71.29 ↗ 2	
34	Malaysia	71.07 ↗ 2	
35	Czech Republic	71.06 ↗ 3	
36	Oman	70.31 -	
37	Puerto Rico	69.35 ↗ 7	
38	Thailand	68.95 ↙ 1	
39	Kazakhstan	68.29 ↙ 5	
40	Italy	65.65 -	
41	Slovenia	65.06 -	
42	Kuwait	64.92 ↗ 3	
43	Chile	64.65 ↙ 1	
44	Jordan	60.33 ↗ 6	
45	Poland	60.22 ↙ 6	
46	Hungary	60.14 ↗ 7	
47	Romania	59.39 -	
48	Cyprus	58.87 -	
49	Greece	57.30 -	
50	India	57.00 ↗ 1	
51	Indonesia	56.76 ↙ 8	
52	Croatia	55.18 ↙ 6	
53	Brazil	51.63 ↗ 4	
54	South Africa	51.34 -	
55	Colombia	50.95 ↗ 3	
56	Philippines	50.87 ↗ 5	
57	Slovak Republic	50.72 ↙ 5	
58	Bulgaria	49.53 ↙ 2	
59	Mexico	49.29 -	
60	Argentina	49.02 ↗ 2	
61	Botswana	48.30 ↙ 1	
62	Kenya	46.58 -	
63	Türkiye	43.94 ↙ 8	
64	Peru	42.78 ↙ 1	
65	Ghana	42.57 -	
66	Namibia	40.07 -	
67	Mongolia	39.91 ↙ 3	
68	Nigeria	34.55 ↙ 2	
69	Venezuela	20.49 ↙ 2	

The IMD World Digital Competitiveness Ranking Methodology

The IMD World Digital Competitiveness Ranking (WDCR) analyzes and ranks the extent to which countries adopt and explore digital technologies leading to transformation in government practices, business models and society in general.

As in the case of the IMD World Competitiveness Ranking, we assume that digital transformation takes place primarily at enterprise level (whether private or state-owned) but it also occurs at the government and society levels.


Based on our research, the methodology of the WDCR ranking defines digital competitiveness into three main factors:

Knowledge

Technology

Future readiness

In turn, each of these factors is divided into 3 sub-factors which highlight every facet of the areas analyzed. Altogether, the WDCR features 9 such sub-factors. These 9 sub-factors comprise 61 criteria, although each sub-factor does not necessarily have the same number of criteria (for example, it takes more criteria to assess Training and Education than to evaluate IT integration).

Each sub-factor, independently of the number of criteria it contains, has the same weight in the overall consolidation of results, that is approximately 11.1% ($100 \div 9 \sim 11.1$).

Criteria can be hard data, which analyze digital competitiveness as it can be measured (e.g. Internet bandwidth speed) or soft data, which analyze competitiveness as it can be perceived (e.g. Agility of companies). Hard criteria represent a weight of 2/3 in the overall ranking whereas the survey data represent a weight of 1/3.

The 61 criteria include 25 new indicators which are only used in the assessment of the WDCR ranking. The rest of the indicators are shared with the IMD World Competitiveness Ranking.

In addition, two criteria are for background information only, which means that they are not used in calculating the overall competitiveness ranking (i.e., Population and GDP).

Finally, aggregating the results of the 9 sub-factors makes the total consolidation, which leads to the overall ranking of the WDCR.

What is the IMD World Digital Competitiveness Ranking?

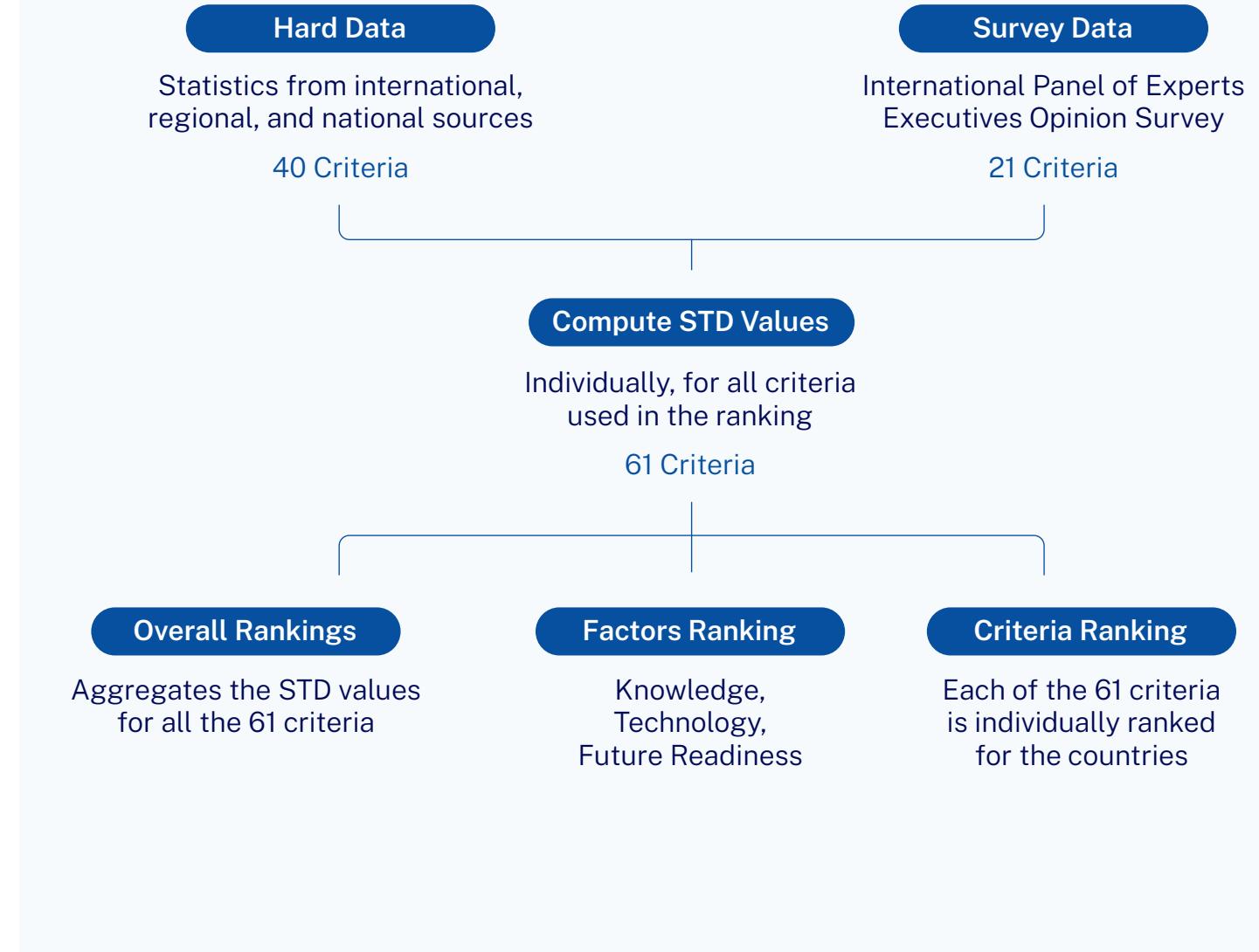
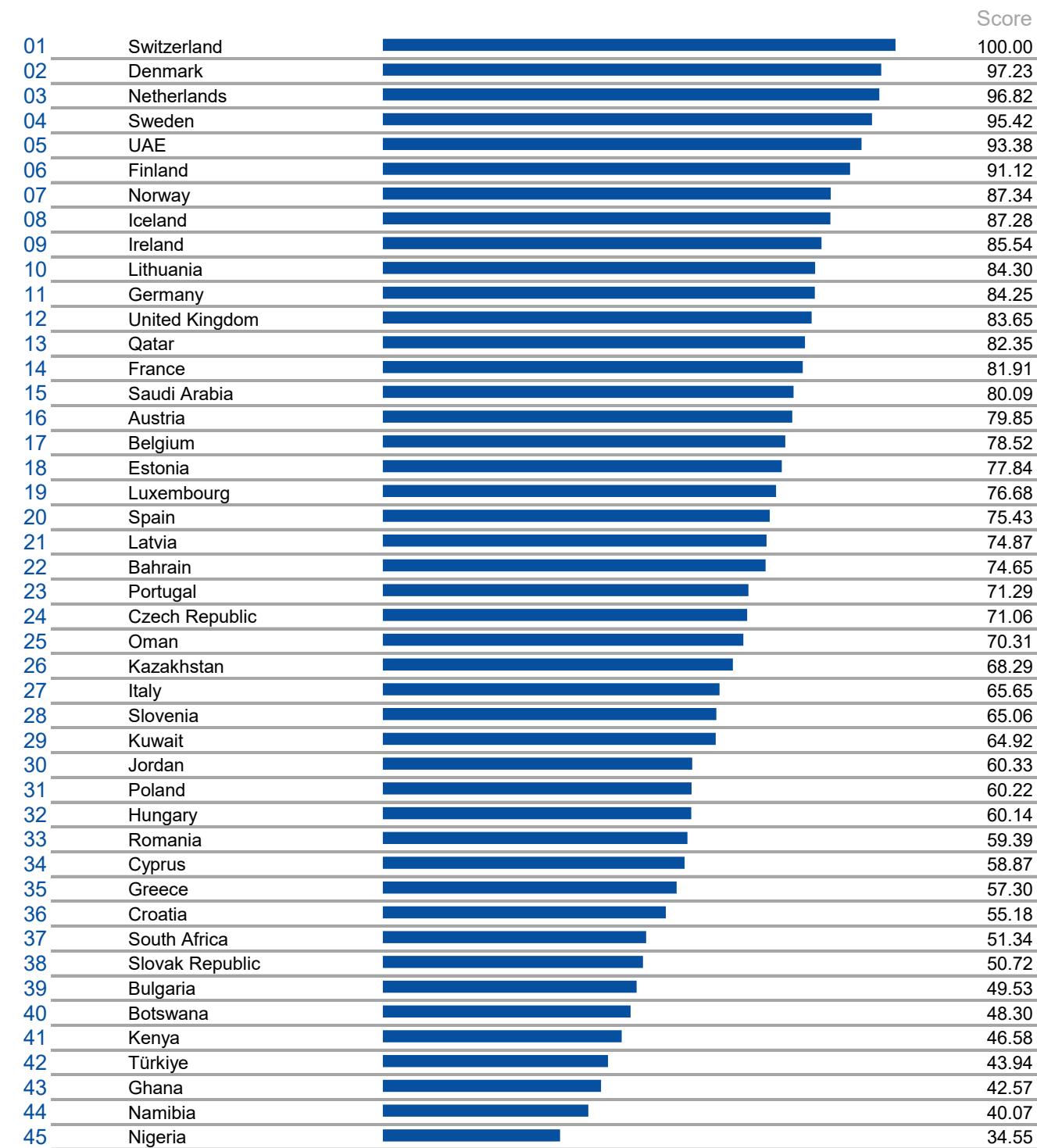
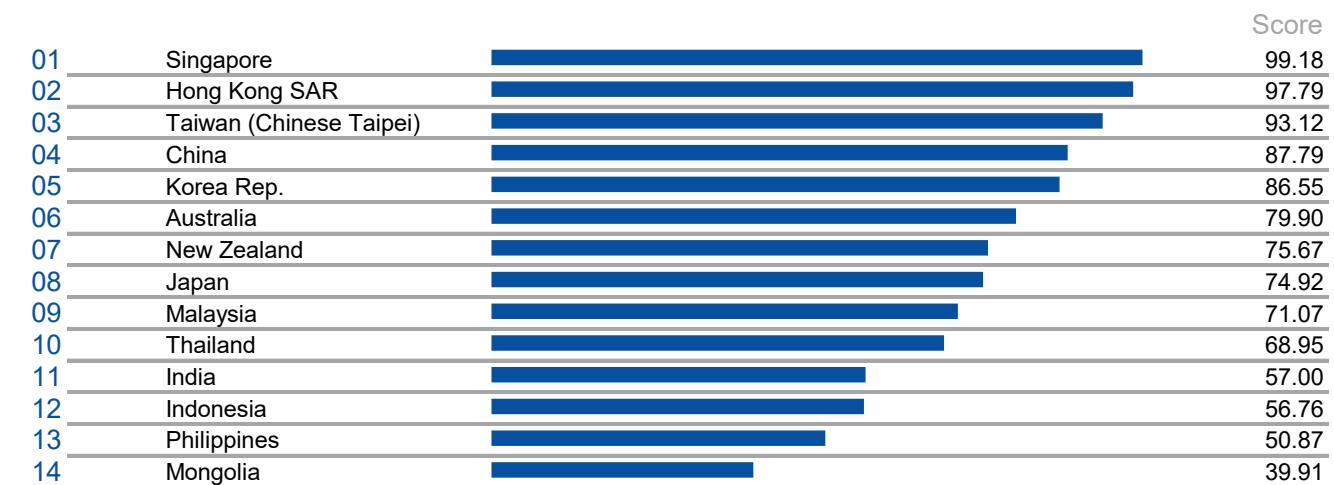

Digital Competitiveness Factors and Sub-factors

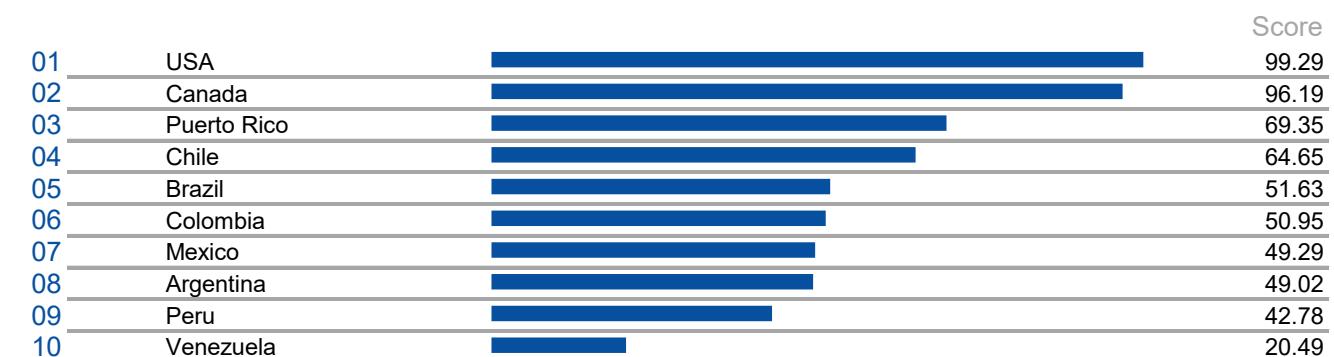
Table 1: Sample size (2021-2025)

Years	2021	2022	2023	2024	2025
Countries	63	63	64	67	69

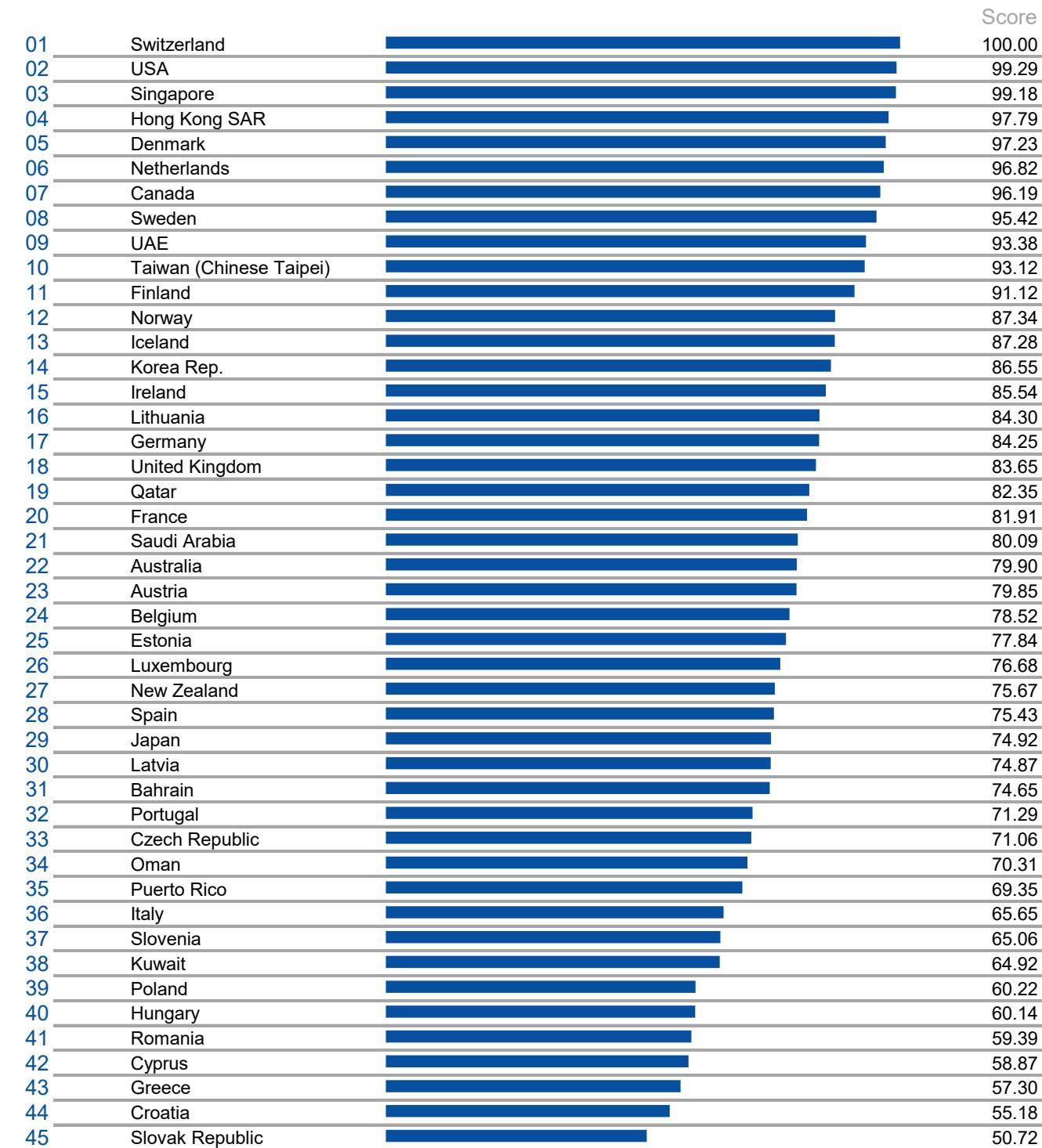

Computing the Rankings


The 2025 IMD World Digital Competitiveness Ranking

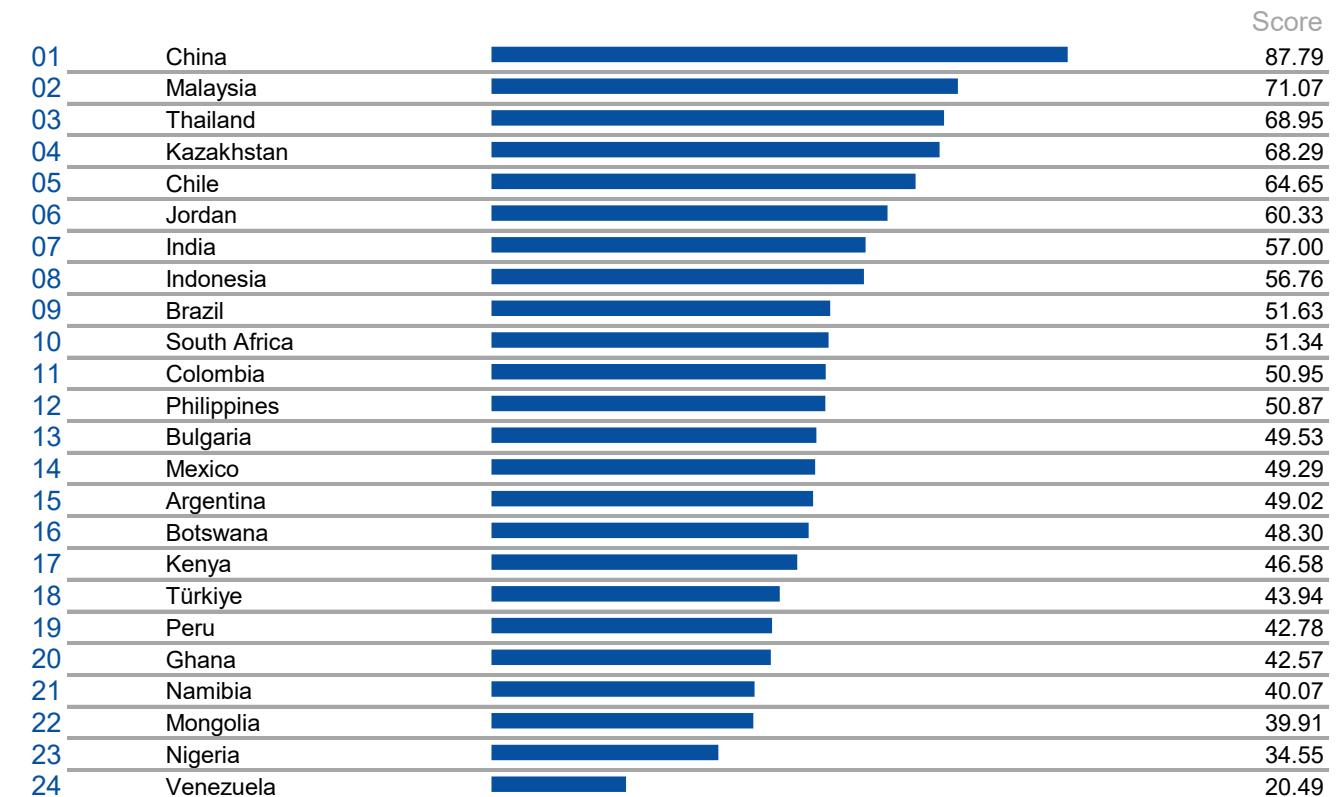
Selected breakdown


Europe - Middle East - Africa

Asia - Pacific



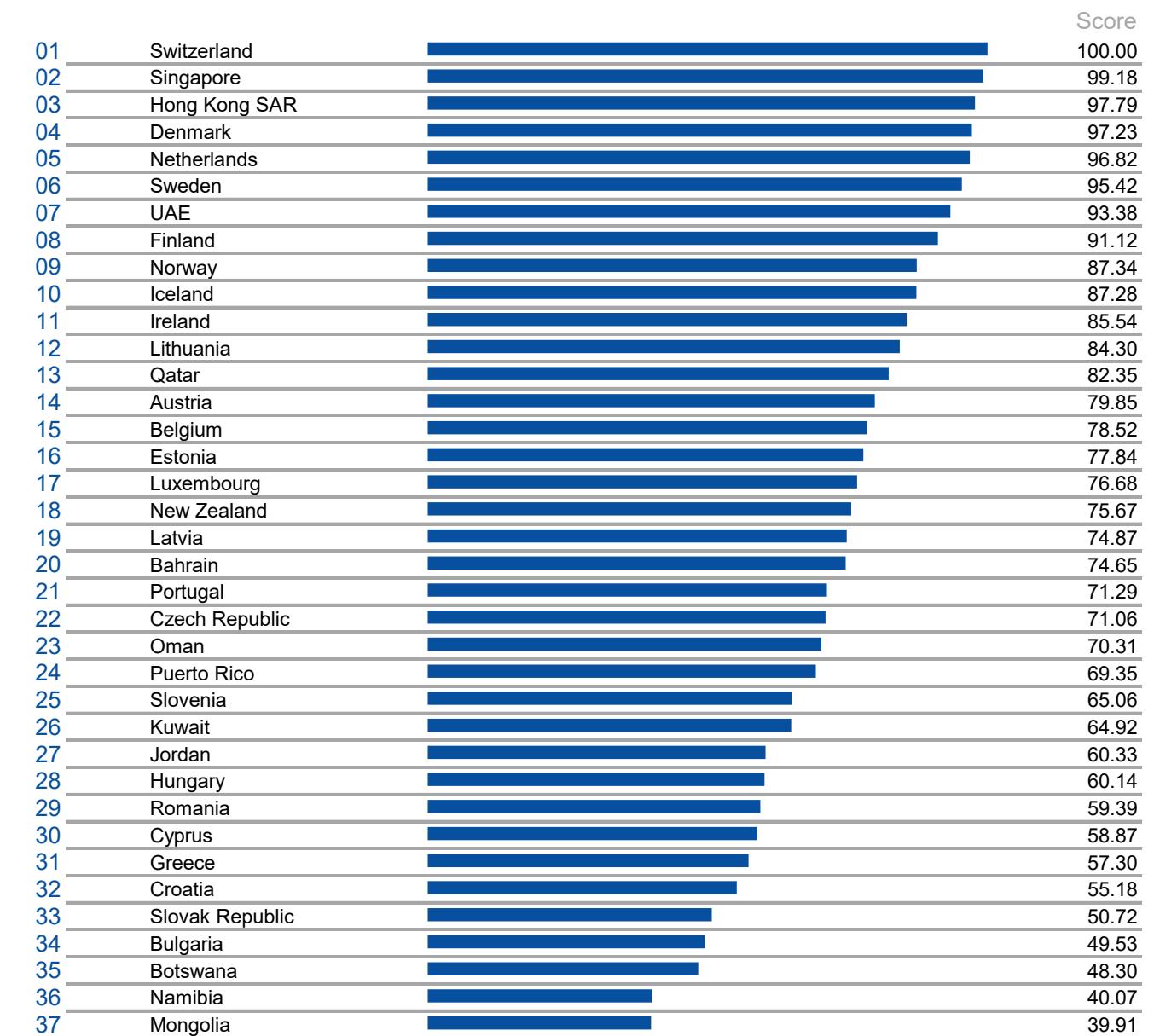
The Americas



Selected breakdown

GDP per capita greater than \$20,000

GDP per capita less than \$20,000



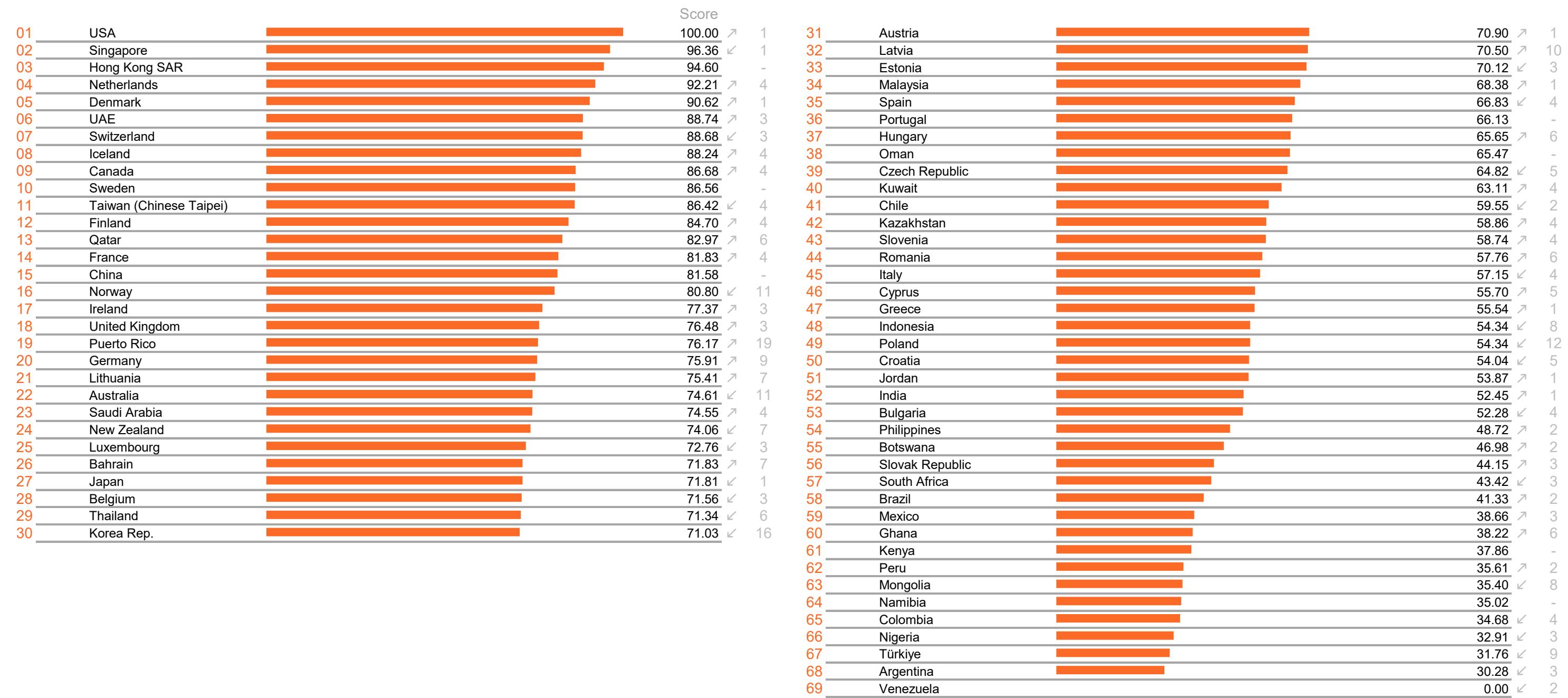
Selected breakdown

Population over 20 million

Population under 20 million

Selected breakdown

KNOWLEDGE


Know-how necessary to discover, understand and build new technologies

		Score				
01	Switzerland	98.22		-	31	
02	Canada	94.88	↗ 4	32	Iceland	66.17 ↘ 1
03	Sweden	94.41	-	33	Slovenia	66.15 ↘ 4
04	Singapore	92.91 ↘ 2	-	34	Czech Republic	65.40 ↘ 1
05	Hong Kong SAR	92.29	-	35	Kazakhstan	63.66 ↘ 1
06	USA	90.60 ↘ 2	-	36	Latvia	62.62 ↗ 3
07	Netherlands	87.23 ↗ 2	-	37	Qatar	61.23 -
08	Korea Rep.	86.71	-	38	Thailand	60.62 ↗ 3
09	Denmark	85.93 ↘ 2	-	39	Bahrain	59.75 ↘ 3
10	Finland	85.61 ↗ 2	-	40	Italy	59.18 ↗ 2
11	United Kingdom	85.21 ↘ 1	-	41	Poland	58.10 ↘ 3
12	UAE	82.95 ↗ 2	-	42	Oman	56.60 -
13	Germany	82.89 ↗ 7	-	43	Hungary	55.88 ↗ 4
14	China	82.42 ↗ 1	-	44	Kuwait	55.68 ↗ 5
15	Austria	81.45 ↗ 6	-	45	Cyprus	54.68 ↘ 1
16	Taiwan (Chinese Taipei)	80.78 ↗ 3	-	46	Croatia	52.51 ↘ 3
17	Norway	80.26	-	47	India	51.07 ↘ 1
18	Australia	79.46 ↘ 5	-	48	Chile	50.84 -
19	Ireland	78.54 ↘ 3	-	49	Romania	50.71 ↗ 3
20	Belgium	77.16 ↘ 2	-	50	Greece	50.64 ↗ 1
21	France	75.92 ↗ 1	-	51	Jordan	49.41 ↗ 7
22	Lithuania	74.62 ↗ 1	-	52	Puerto Rico	49.04 ↗ 1
23	Japan	74.61 ↗ 8	-	53	Slovak Republic	49.01 ↘ 8
24	Luxembourg	72.72	-	54	Colombia	47.62 ↗ 2
25	Spain	71.57 ↗ 1	-	55	Brazil	45.07 ↗ 2
26	Saudi Arabia	70.17 ↗ 1	-	56	Bulgaria	44.86 ↗ 4
27	Estonia	68.70 ↘ 2	-	57	Mexico	44.12 ↗ 2
28	Portugal	67.13 ↗ 1	-	58	Kenya	43.78 -
29	Malaysia	66.82 ↗ 5	-	59	South Africa	41.88 ↘ 4
30	New Zealand	66.46 ↗ 9	-	60	Namibia	41.76 -
				61	Türkiye	41.04 -
				62	Botswana	40.29 ↘ 12
				63	Indonesia	39.45 ↘ 9
				64	Argentina	38.88 ↘ 2
				65	Mongolia	37.97 ↘ 2
				66	Philippines	36.03 ↘ 1
				67	Peru	34.75 ↘ 3
				68	Nigeria	27.98 ↘ 2
				69	Ghana	27.22 ↘ 2
					Venezuela	15.65 ↘ 2

Selected breakdown

TECHNOLOGY

Overall context that enables the development of digital technologies

Selected breakdown

FUTURE READINESS

Level of country preparedness to exploit digital transformation

		Score				
01	Denmark	97.01	↗	1	31	Australia
02	Switzerland	94.96	↗	3	32	Luxembourg
03	Taiwan (Chinese Taipei)	94.02	↗	3	33	Chile
04	Netherlands	92.89	↗	3	34	Czech Republic
05	UAE	90.31	↗	7	35	Puerto Rico
06	Singapore	90.12	↖	5	36	Kazakhstan
07	Iceland	89.27	↗	9	37	Italy
08	USA	89.15	-		38	Portugal
09	Canada	88.86	↗	10	39	Japan
10	Hong Kong SAR	88.35	↗	5	40	Malaysia
11	Sweden	87.15	↖	7	41	Argentina
12	Finland	84.92	↖	3	42	Jordan
13	Lithuania	84.74	↗	4	43	Indonesia
14	Qatar	84.72	↗	7	44	Kuwait
15	Korea Rep.	83.77	↖	12	45	Thailand
16	Norway	82.82	↖	6	46	Colombia
17	Ireland	82.56	↖	6	47	Slovenia
18	China	81.23	↖	4	48	Romania
19	Saudi Arabia	77.41	↗	9	49	South Africa
20	Estonia	76.57	↖	2	50	Brazil
21	Germany	75.79	↗	1	51	Poland
22	Bahrain	74.21	↗	2	52	Philippines
23	Latvia	73.35	↗	11	53	India
24	United Kingdom	71.11	↗	1	54	Cyprus
25	Oman	70.73	-		55	Greece
26	France	69.84	↖	3	56	Mexico
27	Spain	69.77	↗	2	57	Ghana
28	Austria	69.07	↗	3	58	Slovak Republic
29	Belgium	68.69	↖	3	59	Türkiye
30	New Zealand	68.36	↗	9	60	Croatia
					61	Hungary
					62	Kenya
					63	Peru
					64	Botswana
					65	Bulgaria
					66	Mongolia
					67	Venezuela
					68	Namibia
					69	Nigeria

Factor Rankings: five-year overview

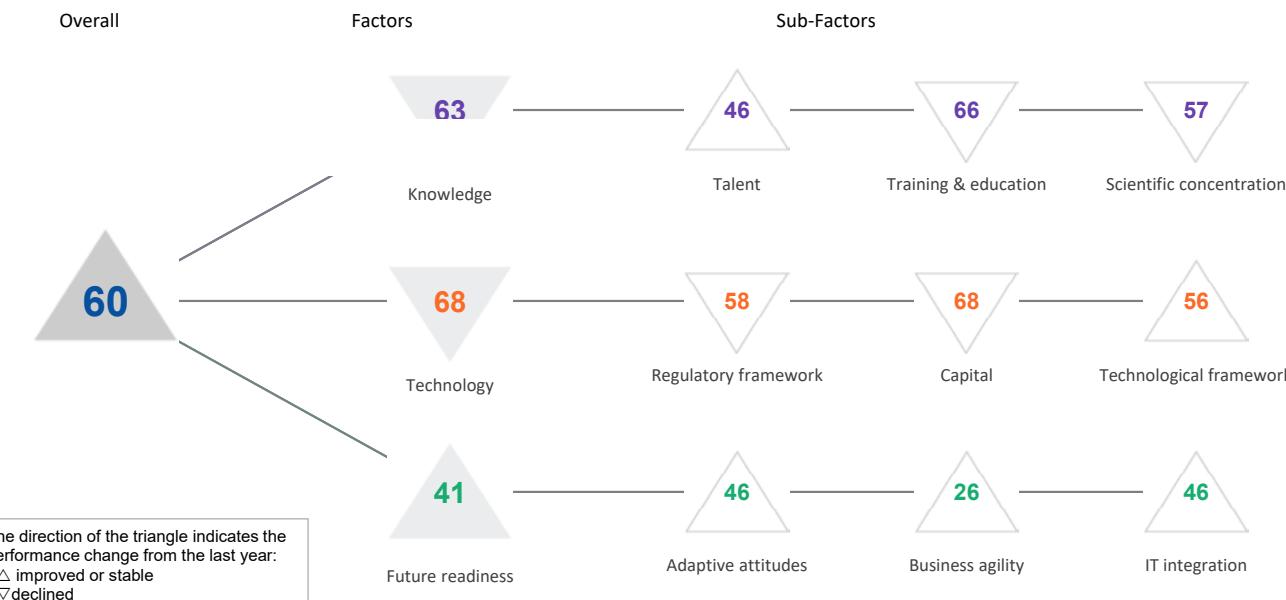
	OVERALL					KNOWLEDGE					TECHNOLOGY					FUTURE READINESS				
	2021	2022	2023	2024	2025	2021	2022	2023	2024	2025	2021	2022	2023	2024	2025	2021	2022	2023	2024	2025
Argentina	61	59	61	62	60	55	58	62	61	63	62	62	63	65	68	52	46	49	47	41
Australia	20	14	16	15	23	19	14	15	13	18	32	36	35	32	31	22	17	20	20	31
Austria	16	18	22	25	24	10	13	16	21	15	-	23	30	33	26	16	13	19	31	28
Bahrain	-	32	38	30	32	-	34	36	35	38	21	21	12	18	20	63	61	63	62	64
Belgium	26	23	15	21	25	64	55	52	49	61	51	51	57	56	54	45	47	52	53	50
Botswana	63	61	60	60	61	53	48	53	59	55	39	39	48	43	44	55	50	58	61	65
Brazil	51	52	57	57	53	47	40	40	42	45	35	32	24	32	33	15	14	13	13	09
Bulgaria	52	48	55	56	58	56	53	59	59	55	39	39	48	43	44	35	41	38	39	41
Canada	13	10	11	13	07	49	50	47	47	47	06	17	21	15	14	20	18	22	15	15
Chile	39	41	42	42	43	56	57	54	55	53	47	40	40	42	45	60	61	62	61	65
China	15	17	19	14	12	56	57	54	55	53	47	40	40	42	45	50	42	42	45	50
Colombia	59	60	62	58	55	47	40	40	42	45	39	39	48	43	44	53	52	53	51	46
Croatia	55	43	44	46	52	47	40	40	42	45	35	32	24	32	33	37	35	26	34	39
Cyprus	43	45	51	48	48	47	40	40	42	45	39	39	48	43	44	09	07	07	06	05
Czech Republic	33	33	24	32	35	47	40	40	42	45	35	32	24	32	33	25	21	23	30	33
Denmark	04	01	04	03	05	43	43	46	46	42	33	31	32	30	31	12	08	09	16	12
Estonia	25	20	18	24	26	47	40	40	42	45	41	46	45	45	46	31	27	34	29	20
Finland	11	07	08	12	11	47	40	40	42	45	39	39	11	12	10	16	16	20	18	14
France	24	22	27	20	21	47	40	40	42	45	39	39	48	43	44	31	27	34	29	20
Germany	18	19	23	23	18	47	40	40	42	45	35	32	24	32	33	46	47	47	48	47
Ghana	-	-	-	65	65	47	40	40	42	45	35	32	30	31	36	31	36	43	37	
Greece	44	50	52	49	49	47	40	40	42	45	45	47	51	50	49	01	02	02	03	03
Hong Kong SAR	02	09	10	07	04	47	40	40	42	45	05	07	06	05	05	36	31	36	43	37
Hungary	45	42	47	53	46	47	40	40	42	45	43	43	46	46	42	40	44	46	41	45
Iceland	21	21	17	19	14	47	40	40	42	45	33	31	32	30	31	43	50	48	52	51
India	46	44	49	51	50	47	40	40	42	45	41	46	45	45	46	49	45	39	40	48
Indonesia	53	51	45	43	51	47	40	40	42	45	60	60	60	53	62	28	37	28	20	17
Ireland	19	24	21	17	16	47	40	40	42	45	23	22	19	16	19	42	44	46	41	45
Italy	40	39	43	40	40	47	40	40	42	45	40	41	43	41	39	30	30	32	26	27
Japan	28	29	32	31	30	47	40	40	42	45	25	28	28	31	23	43	50	48	52	51
Jordan	49	53	50	50	44	47	40	40	42	45	48	53	59	57	50	40	40	41	46	42
Kazakhstan	32	36	34	34	39	47	40	40	42	45	36	30	30	33	34	13	13	12	14	30
Kenya	-	-	-	-	62	47	40	40	42	45	-	-	-	-	57	-	-	-	61	
Korea Rep.	12	08	06	06	15	47	40	40	42	45	15	16	10	08	08	34	34	43	42	39
Kuwait	-	-	41	45	42	47	40	40	42	45	-	-	44	48	43	29	32	33	28	21
Latvia	37	34	40	38	31	47	40	40	42	45	34	36	39	38	35	14	19	25	22	25
Lithuania	30	25	28	22	17	47	40	40	42	45	26	24	23	23	22	26	29	27	35	37
Luxembourg	22	30	26	29	27	47	40	40	42	45	29	35	33	24	24	43	50	48	52	42
Malaysia	27	31	33	36	34	47	40	40	42	45	22	25	29	34	29	57	56	58	62	59
Mexico	56	55	54	59	59	47	40	40	42	45	54	52	50	58	56	61	62	62	64	66
Mongolia	62	62	63	64	67	47	40	40	42	45	58	61	56	62	64	-	-	-	-	68
Namibia	-	-	-	-	66	47	40	40	42	45	-	-	-	-	59	07	04	05	04	
Netherlands	07	06	02	08	06	47	40	40	42	45	11	08	07	09	07	21	28	21	17	24
New Zealand	23	27	25	33	28	47	40	40	42	45	28	33	34	39	30	03	01	01	01	02
Nigeria	-	-	-	66	68	47	40	40	42	45	-	-	-	65	67	-	-	-	67	
Norway	09	12	14	10	13	47	40	40	42	45	17	19	20	17	17	06	10	14	05	16
Oman	-	-	-	-	36	47	40													

Sub-factor Rankings

	KNOWLEDGE			TECHNOLOGY			FUTURE READINESS		
	Talent	Training & education	Scientific concentration	Regulatory framework	Capital	Technological framework	Adaptive attitudes	Business agility	IT integration
Argentina	46	66	57	58	68	56	46	26	46
Australia	11	30	18	18	37	21	23	53	23
Austria	21	11	15	30	34	31	35	31	14
Bahrain	08	61	39	32	26	25	12	21	40
Belgium	23	22	19	22	25	39	37	22	31
Botswana	42	58	66	52	42	61	65	45	62
Brazil	68	56	29	59	64	53	44	57	45
Bulgaria	58	51	54	56	51	50	59	69	60
Canada	03	01	14	14	02	22	16	12	05
Chile	40	46	56	45	48	36	25	49	30
China	28	34	03	23	07	17	22	06	35
Colombia	62	41	55	66	59	64	52	34	58
Croatia	55	39	45	51	38	51	56	66	56
Cyprus	54	42	35	49	54	42	55	62	43
Czech Republic	29	36	28	34	33	41	43	35	24
Denmark	09	13	13	02	22	04	04	02	04
Estonia	30	10	38	29	40	27	14	36	13
Finland	14	12	11	03	20	12	21	18	02
France	27	28	17	08	12	28	38	28	12
Germany	32	08	07	17	17	34	28	27	11
Ghana	52	67	67	50	66	65	61	42	63
Greece	47	57	30	48	49	49	45	65	47
Hong Kong SAR	05	03	16	12	11	01	01	07	29
Hungary	48	38	36	31	50	32	68	56	37
Iceland	22	27	42	19	23	02	02	10	19
India	53	55	31	54	18	59	58	48	53
Indonesia	50	65	53	53	10	63	48	24	54
Ireland	16	23	21	06	41	13	10	13	28
Italy	45	47	23	40	53	46	32	32	42
Japan	63	14	05	43	29	09	36	60	17
Jordan	57	48	41	42	31	57	57	15	50
Kazakhstan	36	04	61	27	55	52	33	23	48
Kenya	44	63	49	44	56	68	63	44	64
Korea Rep.	49	07	01	38	27	15	05	14	20
Kuwait	20	50	52	46	36	35	47	37	41
Latvia	18	29	60	21	43	30	27	29	18
Lithuania	10	19	32	15	35	20	18	09	21
Luxembourg	35	09	24	16	39	26	41	30	25
Malaysia	31	18	40	41	30	19	50	43	34
Mexico	60	59	47	64	60	55	42	51	61
Mongolia	65	49	65	68	63	54	64	68	66
Namibia	43	44	69	61	58	66	66	55	68
Netherlands	06	25	12	05	03	06	03	08	09
New Zealand	24	33	33	26	28	24	19	46	32
Nigeria	66	68	58	55	57	69	69	52	67
Norway	17	17	20	09	19	18	17	20	10
Oman	33	31	62	35	24	45	26	17	39
Peru	67	53	64	60	65	60	53	61	65
Philippines	56	62	63	67	46	47	40	50	57
Poland	51	40	26	57	52	37	51	64	38
Portugal	25	37	25	20	45	43	29	59	26
Puerto Rico	38	60	50	39	13	11	31	39	36
Qatar	15	43	51	24	06	14	24	04	22
Romania	41	54	48	33	61	38	39	54	49
Saudi Arabia	13	24	44	13	16	44	09	25	33
Singapore	04	21	04	01	08	03	11	11	06
Slovak Republic	59	45	46	65	62	48	62	63	59
Slovenia	39	26	27	47	44	40	54	47	51
South Africa	61	52	59	62	47	58	49	58	44
Spain	26	32	22	36	32	33	30	38	16
Sweden	07	02	08	11	04	16	13	16	03
Switzerland	02	05	06	07	15	05	07	03	07
Taiwan (Chinese Taipei)	34	06	10	25	05	08	15	01	08
Thailand	37	35	43	37	21	23	34	33	55
Türkiye	64	64	37	63	67	62	60	67	52
UAE	01	16	34	04	09	10	06	19	01
United Kingdom	12	20	09	28	14	29	20	41	27
USA	19	15	02	10	01	07	08	05	15
Venezuela	69	69	68	69	69	67	67	40	69

IMD World Digital Competitiveness Economy Profiles

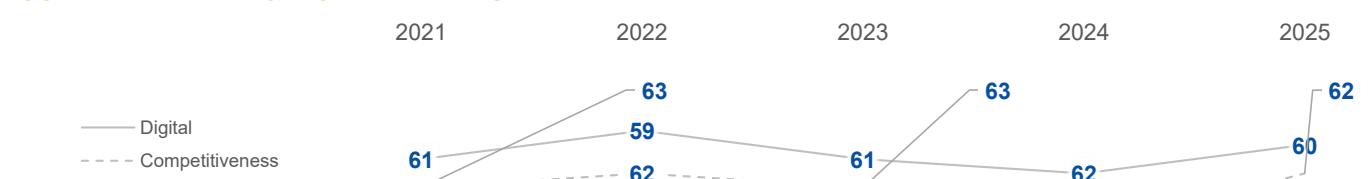
The statistical tables are available for subscribers
of IMD World Competitiveness Online.



Visit our eShop:
www.wcceshop.org

ARGENTINA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	61	59	61	62	60
Knowledge	55	58	62	61	63
Technology	62	62	63	65	68
Future readiness	52	46	49	47	41

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

THE AMERICAS (10 economies)

POPULATIONS > 20 MILLION (32 economies)

ARGENTINA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

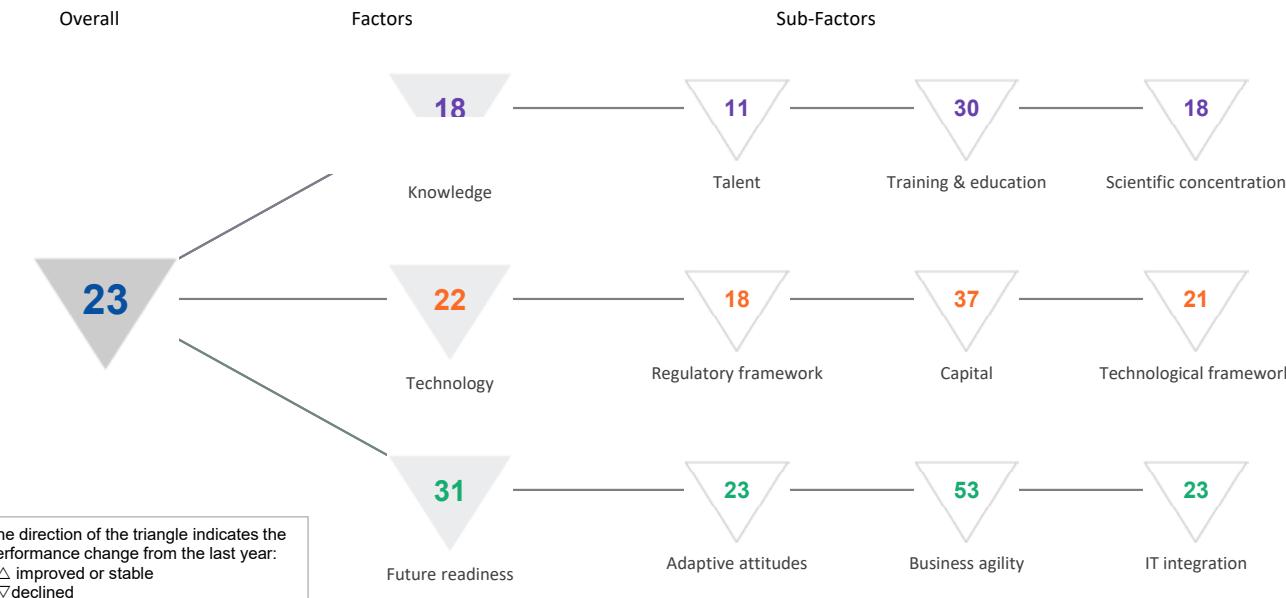
Sub-Factors	2021	2022	2023	2024	2025
Talent	62	61	61	62	46
Training & education	46	49	60	60	66
Scientific concentration	48	48	50	52	57

Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	54	▷ Employee training	66	Total expenditure on R&D (%)	49
International experience	41	Total public expenditure on education	33	Total R&D personnel per capita	45
Management of cities	57	Higher education achievement	60	R&D productivity by publication	30
Digital/Technological skills	54	Pupil-teacher ratio (tertiary education)	-	High-tech patent grants	56
Foreign highly skilled personnel	42	Graduates in Sciences	60	AI-related patent publications	45
► Net flow of international students	23	Women with degrees	49	Robots in Education and R&D	37
► Female researchers	04	Computer science education index	60	AI articles	62
Scientific and technical employment	49				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	57	61	57	48	58
Capital	63	62	63	66	68
Technological framework	56	55	56	57	56
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	64	IT & media stock market capitalization	47	► Communications technology	67
Enforcing contracts	52	Funding for technological development	65	Mobile broadband subscribers	54
► Immigration laws	03	► Banking and financial services	68	Wireless broadband	61
Development & application of tech.	54	► Country credit rating	66	Internet users	39
Scientific research legislation	65	► Venture capital	67	Internet bandwidth speed	54
Intellectual property rights	62	Investment in Telecommunications	65	High-tech exports (%)	54
AI policies passed into law	52	AI private investment	-	Secure internet servers	47

FUTURE READINESS

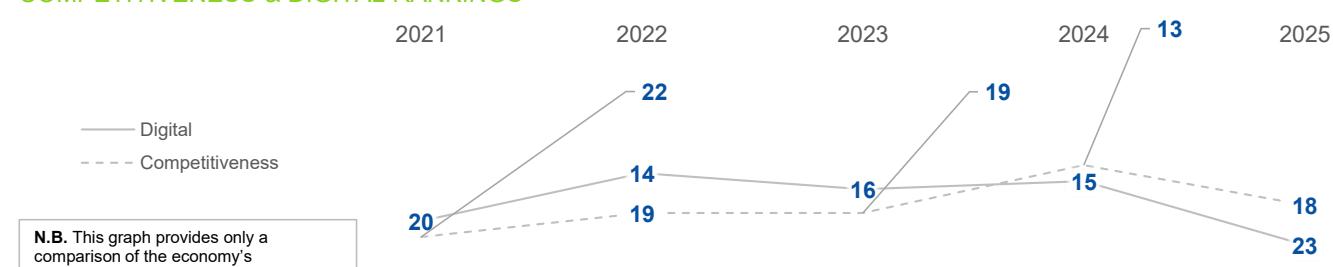

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	50	49	55	53	46
Business agility	43	37	38	32	26
IT integration	59	53	53	53	46

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	53	Opportunities and threats	27	E-Government	37
Internet retailing	38	World robots distribution	36	Public-private partnerships	47
Tablet possession	35	Agility of companies	51	Cyber security	58
Smartphone possession	43	Use of big data and analytics	39	Software piracy	60
Attitudes toward globalization	56	Knowledge transfer	51	Government cyber security capacity	37
Flexibility and adaptability	29	► Entrepreneurial fear of failure	01	► Privacy protection by law exists	08

AUSTRALIA

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)



The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	20	14	16	15	23
Knowledge	19	14	15	13	18
Technology	18	15	18	11	22
Future readiness	22	17	20	20	31

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

ASIA - PACIFIC (14 economies)

POPULATIONS > 20 MILLION (32 economies)

AUSTRALIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

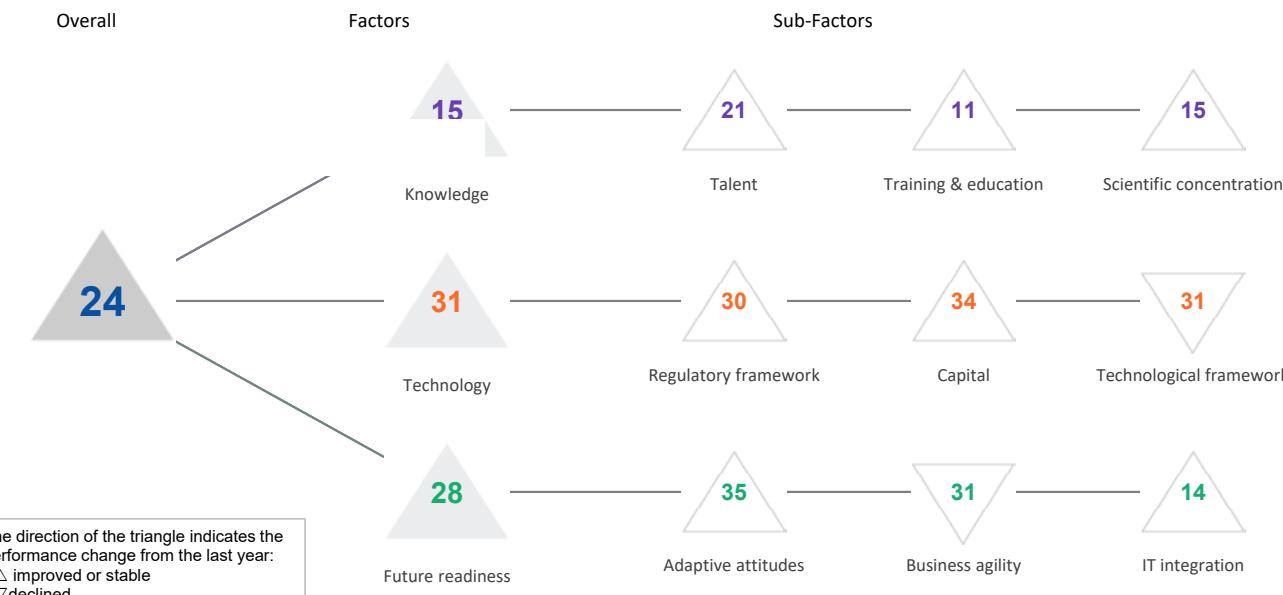
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	08	07	08	09	11
Training & education	37	29	28	27	30
Scientific concentration	18	16	16	15	18
Talent	Rank	Training & education			Rank
Educational assessment PISA - Math	16	▷ Employee training			60
▷ International experience	59	Total public expenditure on education			21
Management of cities	34	Higher education achievement			15
Digital/Technological skills	49	Pupil-teacher ratio (tertiary education)			-
Foreign highly skilled personnel	15	▷ Graduates in Sciences			52
▶ Net flow of international students	02	Women with degrees			08
Female researchers	-	▶ Computer science education index			05
Scientific and technical employment	13				
Scientific concentration	Rank	Total expenditure on R&D (%)			23
Total R&D personnel per capita	-	Total R&D personnel per capita			
R&D productivity by publication	16	R&D productivity by publication			
High-tech patent grants	31	AI-related patent publications			
AI-related patent publications	13	Robots in Education and R&D			
Robots in Education and R&D	19	AI articles			
AI articles	14				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	17	10	15	05	18
Capital	17	13	16	19	37
Technological framework	27	26	31	12	21
Regulatory framework	Rank	Capital			Rank
Starting a business	05	IT & media stock market capitalization			36
Enforcing contracts	06	Funding for technological development			46
Immigration laws	30	Banking and financial services			28
Development & application of tech.	38	▶ Country credit rating			01
Scientific research legislation	21	Venture capital			40
Intellectual property rights	15	Investment in Telecommunications			45
AI policies passed into law	34	AI private investment			19
Technological framework	Rank	Technological framework			
Communications technology	46	Mobile broadband subscribers			03
Mobile broadband subscribers	03	Wireless broadband			19
Wireless broadband	19	Internet users			13
Internet users	13	Internet bandwidth speed			46
Internet bandwidth speed	46	High-tech exports (%)			17
High-tech exports (%)	17	Secure internet servers			21
Secure internet servers	21				

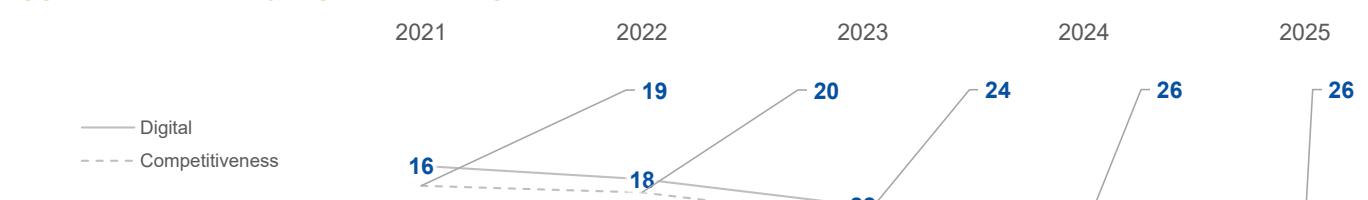
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	14	08	04	16	23
Business agility	55	40	42	38	53
IT integration	21	15	23	15	23

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	19	▷ Opportunities and threats			57
Internet retailing	06	World robots distribution			31
Tablet possession	23	▷ Agility of companies			65
Smartphone possession	36	Use of big data and analytics			46
Attitudes toward globalization	38	▶ Software piracy			05
Flexibility and adaptability	44	Knowledge transfer			32
		Entrepreneurial fear of failure			30
Privacy protection by law exists	29				

AUSTRIA

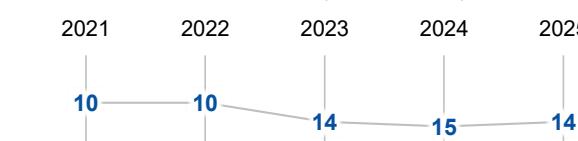
DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	16	18	22	25	24
Knowledge	10	13	16	21	15
Technology	32	36	35	32	31
Future readiness	16	13	19	31	28

COMPETITIVENESS & DIGITAL RANKINGS



PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

AUSTRIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

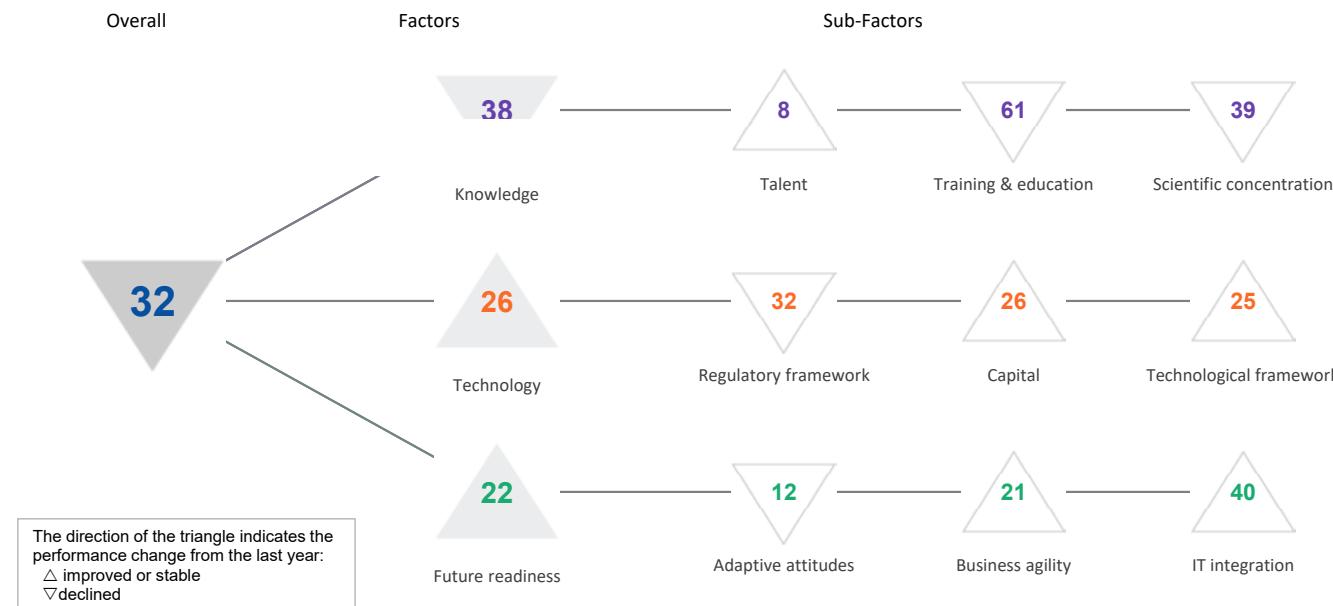
Sub-Factors	2021	2022	2023	2024	2025
Talent	15	16	20	23	21
Training & education	05	12	11	18	11
Scientific concentration	15	15	17	17	15

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	16	► Employee training	03	Total expenditure on R&D (%)	08
International experience	29	Total public expenditure on education	30	► Total R&D personnel per capita	07
Management of cities	16	Higher education achievement	34	R&D productivity by publication	50
Digital/Technological skills	38	► Pupil-teacher ratio (tertiary education)	02	High-tech patent grants	20
Foreign highly skilled personnel	39	Graduates in Sciences	10	AI-related patent publications	17
Net flow of international students	07	Women with degrees	35	Robots in Education and R&D	11
Female researchers	47	Computer science education index	26	AI articles	16
Scientific and technical employment	16				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	26	29	34	32	30
Capital	32	36	34	41	34
Technological framework	38	37	38	23	31
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	55	IT & media stock market capitalization	45	Communications technology	27
Enforcing contracts	10	Funding for technological development	24	Mobile broadband subscribers	18
Immigration laws	55	Banking and financial services	29	Wireless broadband	24
Development & application of tech.	45	Country credit rating	13	Internet users	21
Scientific research legislation	22	Venture capital	41	Internet bandwidth speed	44
Intellectual property rights	08	► Investment in Telecommunications	58	High-tech exports (%)	32
AI policies passed into law	15	AI private investment	09	Secure internet servers	24

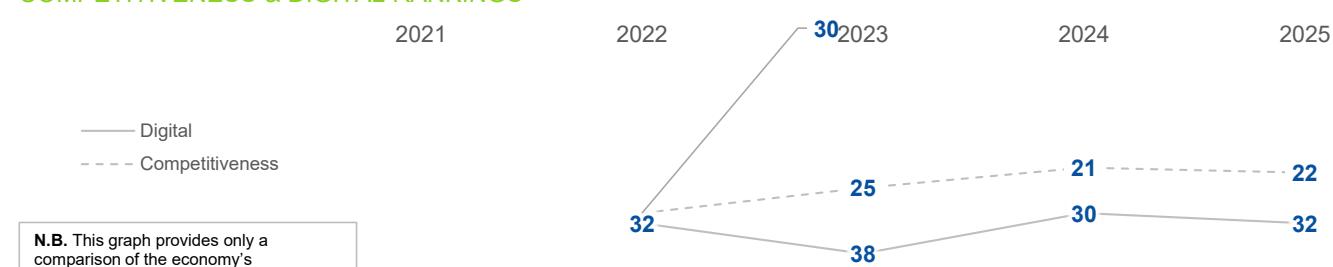
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	21	19	24	38	35
Business agility	18	21	22	28	31
IT integration	11	11	13	20	14

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	32	Opportunities and threats	38	E-Government	22
Internet retailing	16	World robots distribution	23	Public-private partnerships	43
Tablet possession	22	Agility of companies	28	► Cyber security	05
Smartphone possession	22	Use of big data and analytics	49	► Software piracy	06
Attitudes toward globalization	58	Knowledge transfer	19	Government cyber security capacity	36
Flexibility and adaptability	60	Entrepreneurial fear of failure	20	Privacy protection by law exists	43

BAHRAIN

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	-	32	38	30	32
Knowledge	-	34	36	35	38
Technology	-	23	30	33	26
Future readiness	-	36	46	24	22

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

BAHRAIN

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

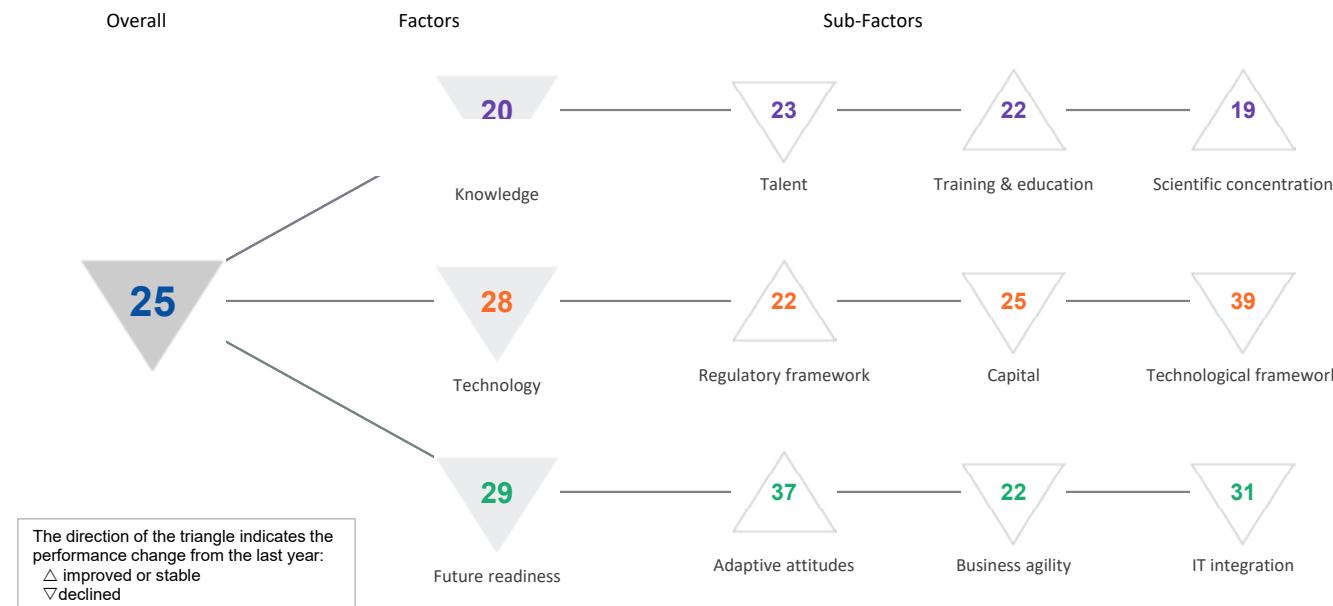
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	-	13	15	11	08
Training & education	-	48	55	59	61
Scientific concentration	-	31	34	31	39
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	27	Total expenditure on R&D (%)	-
International experience	09	▷ Total public expenditure on education	62	Total R&D personnel per capita	-
Management of cities	09	Higher education achievement	59	R&D productivity by publication	-
Digital/Technological skills	08	Pupil-teacher ratio (tertiary education)	58	High-tech patent grants	44
Foreign highly skilled personnel	08	Graduates in Sciences	48	AI-related patent publications	-
Net flow of international students	36	► Women with degrees	04	Robots in Education and R&D	-
► Female researchers	05	▷ Computer science education index	60	AI articles	33
Scientific and technical employment	-				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	-	32	29	31	32
Capital	-	34	47	29	26
Technological framework	-	17	14	38	25
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	33	IT & media stock market capitalization	19	Communications technology	12
Enforcing contracts	42	Funding for technological development	14	Mobile broadband subscribers	08
► Immigration laws	01	Banking and financial services	06	Wireless broadband	15
Development & application of tech.	06	► Country credit rating	61	► Internet users	01
Scientific research legislation	32	Venture capital	18	Internet bandwidth speed	33
Intellectual property rights	34	Investment in Telecommunications	25	► High-tech exports (%)	67
AI policies passed into law	60	AI private investment	-	Secure internet servers	46

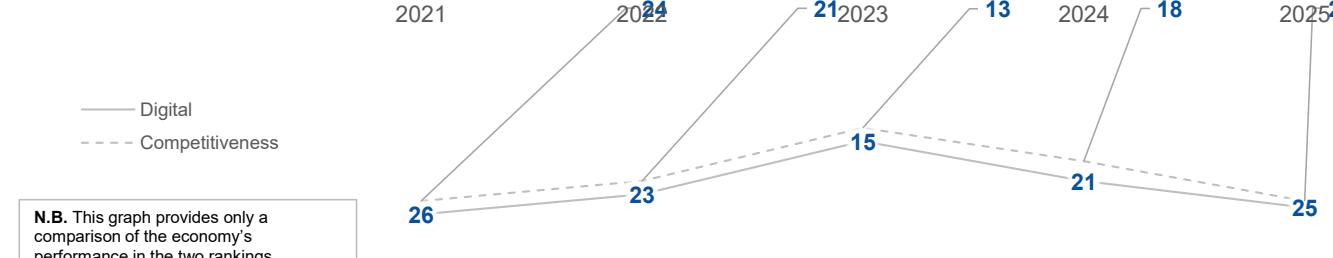
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	-	23	49	07	12
Business agility	-	29	32	26	21
IT integration	-	46	50	41	40

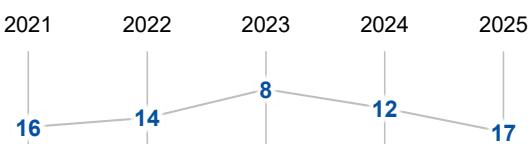
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	17	Opportunities and threats	16	E-Government	18
Internet retailing	-	World robots distribution	-	Public-private partnerships	08
Tablet possession	27	Agility of companies	25	Cyber security	11
Smartphone possession	10	Use of big data and analytics	16	Software piracy	46
Attitudes toward globalization	16	Knowledge transfer	23	Government cyber security capacity	48
► Flexibility and adaptability	03	Entrepreneurial fear of failure	-	▷ Privacy protection by law exists	61

BELGIUM

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	26	23	15	21	25
Knowledge	21	21	12	18	20
Technology	23	24	19	25	28
Future readiness	26	25	16	26	29

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

BELGIUM

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

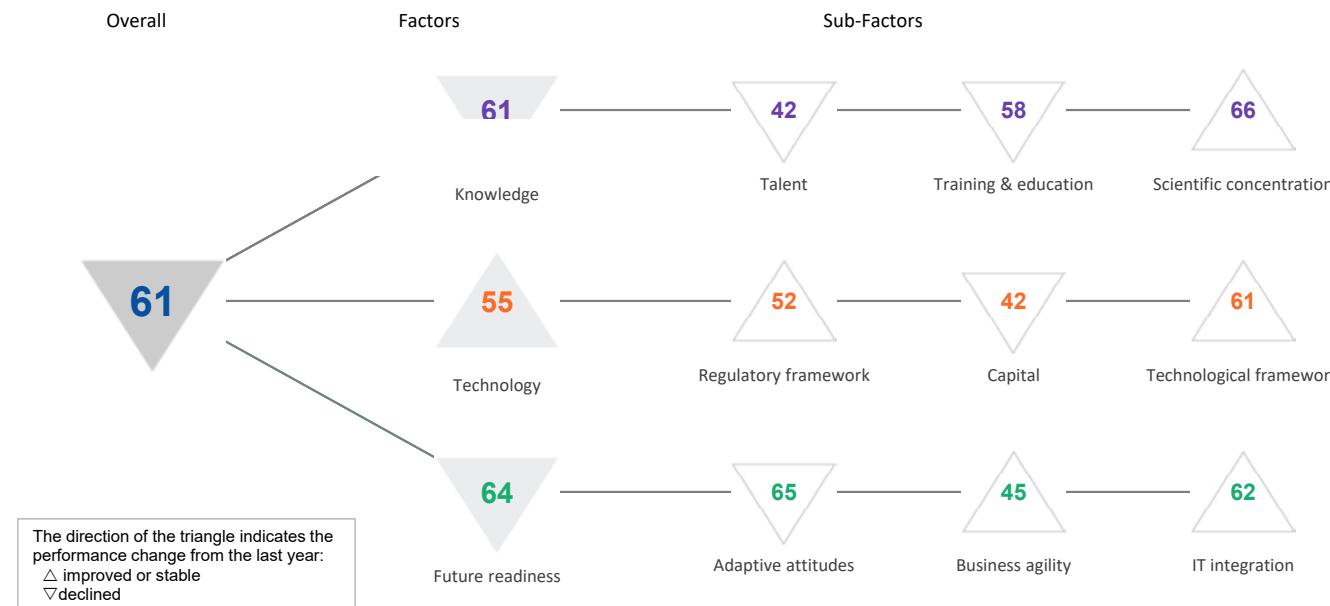
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	20	17	07	15	23
Training & education	31	30	22	23	22
Scientific concentration	20	19	18	19	19
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	12	Employee training	15	► Total expenditure on R&D (%)	04
International experience	19	► Total public expenditure on education	05	► Total R&D personnel per capita	05
Management of cities	41	Higher education achievement	24	R&D productivity by publication	49
Digital/Technological skills	25	Pupil-teacher ratio (tertiary education)	33	High-tech patent grants	33
Foreign highly skilled personnel	23	► Graduates in Sciences	49	AI-related patent publications	22
Net flow of international students	15	Women with degrees	24	Robots in Education and R&D	18
Female researchers	42	Computer science education index	29	AI articles	22
Scientific and technical employment	18				

TECHNOLOGY

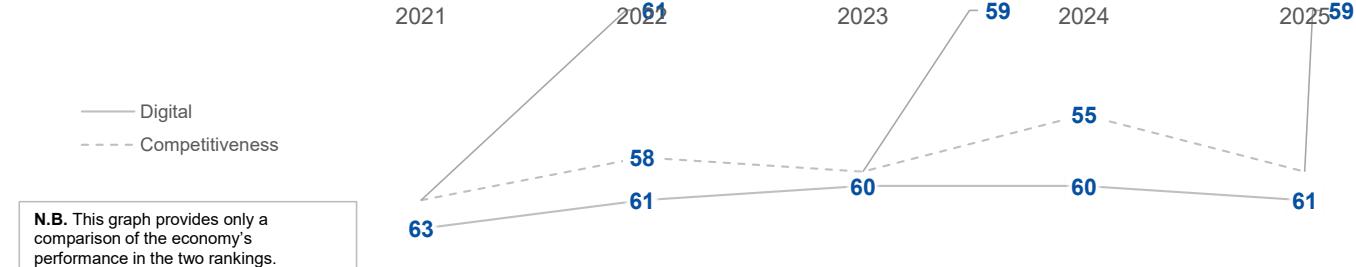
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	18	17	05	30	22
Capital	20	23	18	18	25
Technological framework	37	39	39	33	39
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	27	IT & media stock market capitalization	42	Communications technology	19
Enforcing contracts	39	Funding for technological development	31	Mobile broadband subscribers	27
Immigration laws	34	Banking and financial services	19	► Wireless broadband	62
Development & application of tech.	27	Country credit rating	22	Internet users	23
Scientific research legislation	14	Venture capital	29	Internet bandwidth speed	34
Intellectual property rights	17	Investment in Telecommunications	20	High-tech exports (%)	22
AI policies passed into law	15	AI private investment	24	Secure internet servers	28

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	22	28	39	39	37
Business agility	38	27	09	15	22
IT integration	26	22	15	29	31

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
► E-Participation	60	Opportunities and threats	24	E-Government	48
► Internet retailing	10	World robots distribution	26	Public-private partnerships	40
Tablet possession	39	Agility of companies	13	Cyber security	20
Smartphone possession	49	Use of big data and analytics	31	Software piracy	13
Attitudes toward globalization	29	► Knowledge transfer	12	► Government cyber security capacity	53
► Flexibility and adaptability	54	Entrepreneurial fear of failure	-	Privacy protection by law exists	12

BOTSWANA


DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	63	61	60	60	61
Knowledge	64	55	52	49	61
Technology	63	59	52	57	55
Future readiness	63	61	63	62	64

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

BOTSWANA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

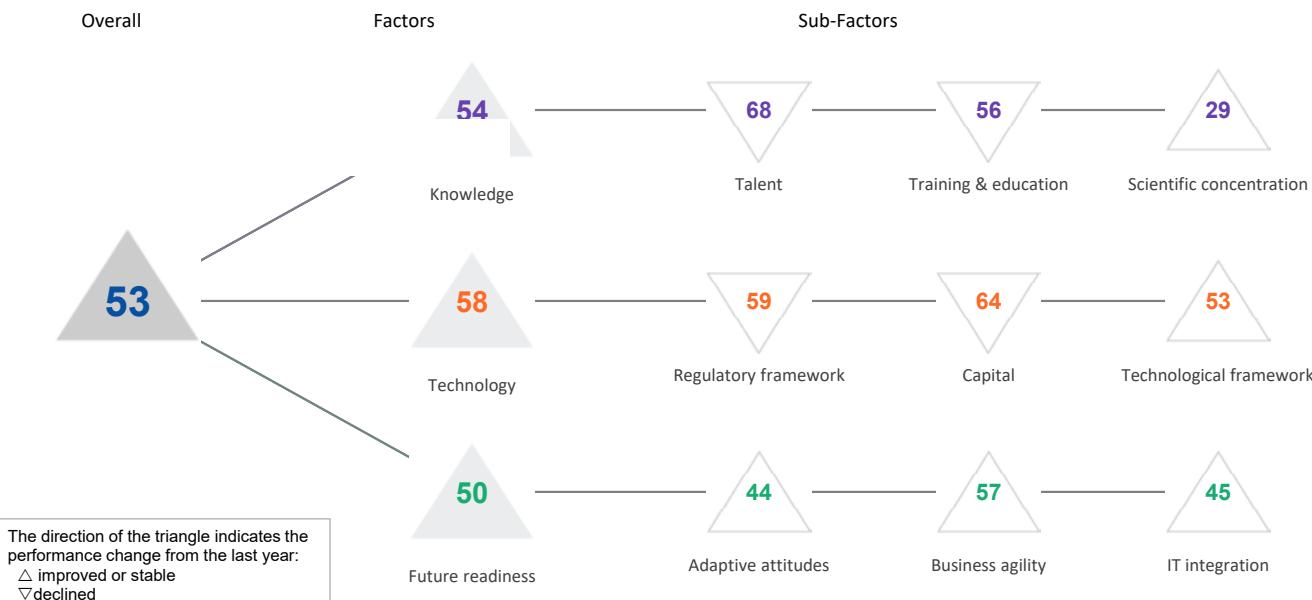
▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	53	42	37	31	42
Training & education	48	39	41	37	58
Scientific concentration	63	63	64	66	66
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	50	Total expenditure on R&D (%)	-
International experience	31	Total public expenditure on education	-	Total R&D personnel per capita	-
Management of cities	31	Higher education achievement	-	R&D productivity by publication	-
Digital/Technological skills	46	► Pupil-teacher ratio (tertiary education)	24	▷ High-tech patent grants	65
► Foreign highly skilled personnel	11	Graduates in Sciences	54	AI-related patent publications	-
Net flow of international students	47	Women with degrees	-	Robots in Education and R&D	-
Female researchers	-	Computer science education index	60	AI articles	58
Scientific and technical employment	54				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	63	54	54	56	52
Capital	56	47	06	26	42
Technological framework	64	62	63	64	61
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
► Starting a business	65	IT & media stock market capitalization	-	Communications technology	57
Enforcing contracts	61	Funding for technological development	47	Mobile broadband subscribers	59
► Immigration laws	16	Banking and financial services	51	Wireless broadband	47
Development & application of tech.	34	Country credit rating	41	Internet users	56
Scientific research legislation	35	Venture capital	42	► Internet bandwidth speed	67
Intellectual property rights	35	► Investment in Telecommunications	22	► High-tech exports (%)	66
AI policies passed into law	53	AI private investment	-	Secure internet servers	58


FUTURE READINESS

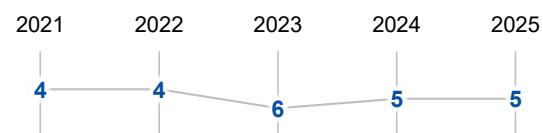
Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	63	59	63	63	65
Business agility	46	51	46	51	45
IT integration	63	61	63	62	62
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
► E-Participation	64	Opportunities and threats	53	E-Government	63
Internet retailing	-	World robots distribution	-	Public-private partnerships	35
Tablet possession	-	Agility of companies	60	Cyber security	51
Smartphone possession	-	Use of big data and analytics	48	Software piracy	63
Attitudes toward globalization	50	► Knowledge transfer	29	Government cyber security capacity	57
Flexibility and adaptability	49	Entrepreneurial fear of failure	-	Privacy protection by law exists	33

BRAZIL

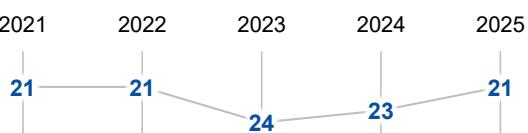
DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	51	52	57	57	53
Knowledge	51	51	57	56	54
Technology	55	55	60	60	58
Future readiness	45	47	52	53	50

COMPETITIVENESS & DIGITAL RANKINGS



PEER GROUPS RANKINGS

THE AMERICAS (10 economies)

POPULATIONS > 20 MILLION (32 economies)

BRAZIL

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

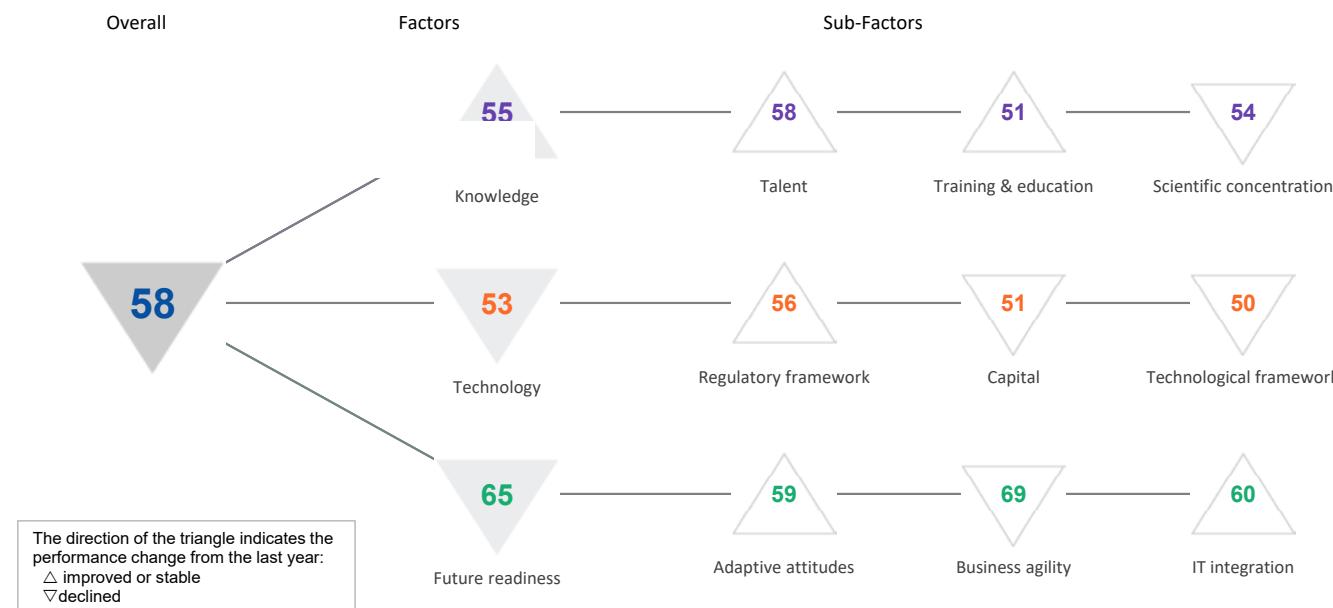
Sub-Factors	2021	2022	2023	2024	2025
Talent	63	62	64	66	68
Training & education	58	51	57	51	56
Scientific concentration	21	25	25	29	29

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	53	Employee training	51	Total expenditure on R&D (%)	35
▷ International experience	64	Total public expenditure on education	26	Total R&D personnel per capita	-
▷ Management of cities	64	Higher education achievement	56	▷ R&D productivity by publication	09
Digital/Technological skills	60	Pupil-teacher ratio (tertiary education)	48	High-tech patent grants	46
▷ Foreign highly skilled personnel	63	Graduates in Sciences	59	AI-related patent publications	31
Net flow of international students	49	Women with degrees	52	▷ Robots in Education and R&D	17
Female researchers	-	Computer science education index	31	AI articles	55
Scientific and technical employment	37				

TECHNOLOGY

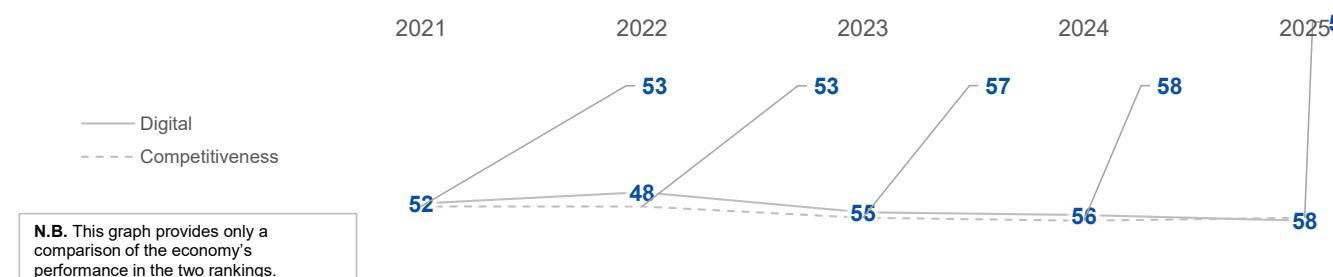
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	51	55	58	53	59
Capital	59	57	62	59	64
Technological framework	51	51	51	54	53
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	61	IT & media stock market capitalization	46	Communications technology	55
Enforcing contracts	41	Funding for technological development	62	Mobile broadband subscribers	53
Immigration laws	35	Banking and financial services	60	Wireless broadband	54
Development & application of tech.	58	Country credit rating	57	Internet users	52
Scientific research legislation	60	▷ Venture capital	64	Internet bandwidth speed	35
Intellectual property rights	60	Investment in Telecommunications	49	High-tech exports (%)	44
AI policies passed into law	44	AI private investment	16	Secure internet servers	45

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	40	43	51	47	44
Business agility	42	52	61	63	57
IT integration	49	43	45	50	45

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
▷ E-Participation	19	Opportunities and threats	47	E-Government	42
Internet retailing	45	World robots distribution	20	Public-private partnerships	55
Tablet possession	56	Agility of companies	42	Cyber security	59
▷ Smartphone possession	19	Use of big data and analytics	57	Software piracy	36
Attitudes toward globalization	46	▷ Knowledge transfer	65	▷ Government cyber security capacity	26
Flexibility and adaptability	40	Entrepreneurial fear of failure	41	Privacy protection by law exists	44

BULGARIA


DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	52	48	55	56	58
Knowledge	53	48	53	59	55
Technology	51	51	56	49	53
Future readiness	55	50	58	61	65

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

BULGARIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths ▷ Overall Top Weaknesses

KNOWLEDGE

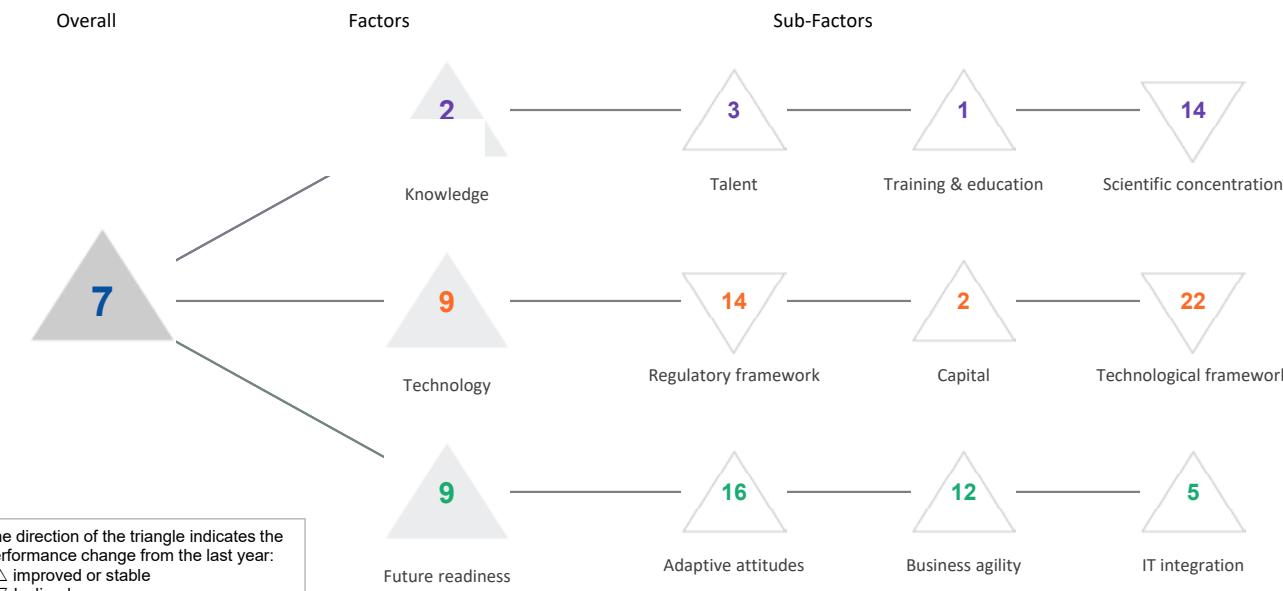
Sub-Factors	2021	2022	2023	2024	2025
Talent	54	56	58	61	58
Training & education	53	52	46	54	51
Scientific concentration	46	40	44	47	54

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	44	▷ Employee training	69	Total expenditure on R&D (%)	43
International experience	65	Total public expenditure on education	46	Total R&D personnel per capita	38
Management of cities	61	Higher education achievement	46	R&D productivity by publication	40
Digital/Technological skills	43	► Pupil-teacher ratio (tertiary education)	12	High-tech patent grants	24
Foreign highly skilled personnel	64	Graduates in Sciences	47	AI-related patent publications	52
Net flow of international students	42	Women with degrees	32	Robots in Education and R&D	47
► Female researchers	15	Computer science education index	53	AI articles	46
Scientific and technical employment	38				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	55	52	60	61	56
Capital	53	52	54	37	51
Technological framework	42	46	50	49	50
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	48	► IT & media stock market capitalization	16	Communications technology	42
Enforcing contracts	31	Funding for technological development	55	Mobile broadband subscribers	43
Immigration laws	61	Banking and financial services	62	► Wireless broadband	17
Development & application of tech.	60	Country credit rating	44	Internet users	58
Scientific research legislation	59	Venture capital	43	Internet bandwidth speed	48
Intellectual property rights	65	Investment in Telecommunications	23	High-tech exports (%)	39
AI policies passed into law	27	AI private investment	46	Secure internet servers	17

FUTURE READINESS

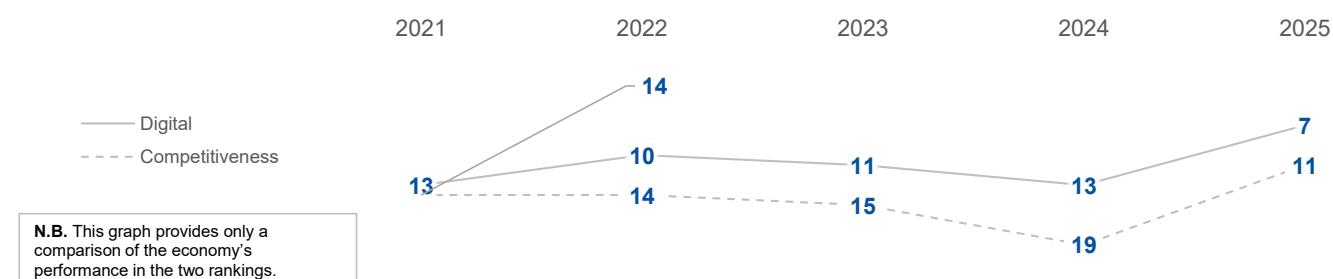

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	45	39	50	61	59
Business agility	61	56	62	57	69
IT integration	53	49	57	60	60

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	47	▷ Opportunities and threats	68	E-Government	47
Internet retailing	47	World robots distribution	42	Public-private partnerships	62
Tablet possession	37	▷ Agility of companies	68	Cyber security	63
Smartphone possession	33	▷ Use of big data and analytics	69	Software piracy	51
Attitudes toward globalization	63	▷ Knowledge transfer	67	Government cyber security capacity	61
Flexibility and adaptability	61	Entrepreneurial fear of failure	-	► Privacy protection by law exists	04

CANADA

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)



The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	13	10	11	13	07
Knowledge	07	03	04	06	02
Technology	15	14	13	13	09
Future readiness	15	11	11	19	09

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

THE AMERICAS (10 economies)

POPULATIONS > 20 MILLION (32 economies)

CANADA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

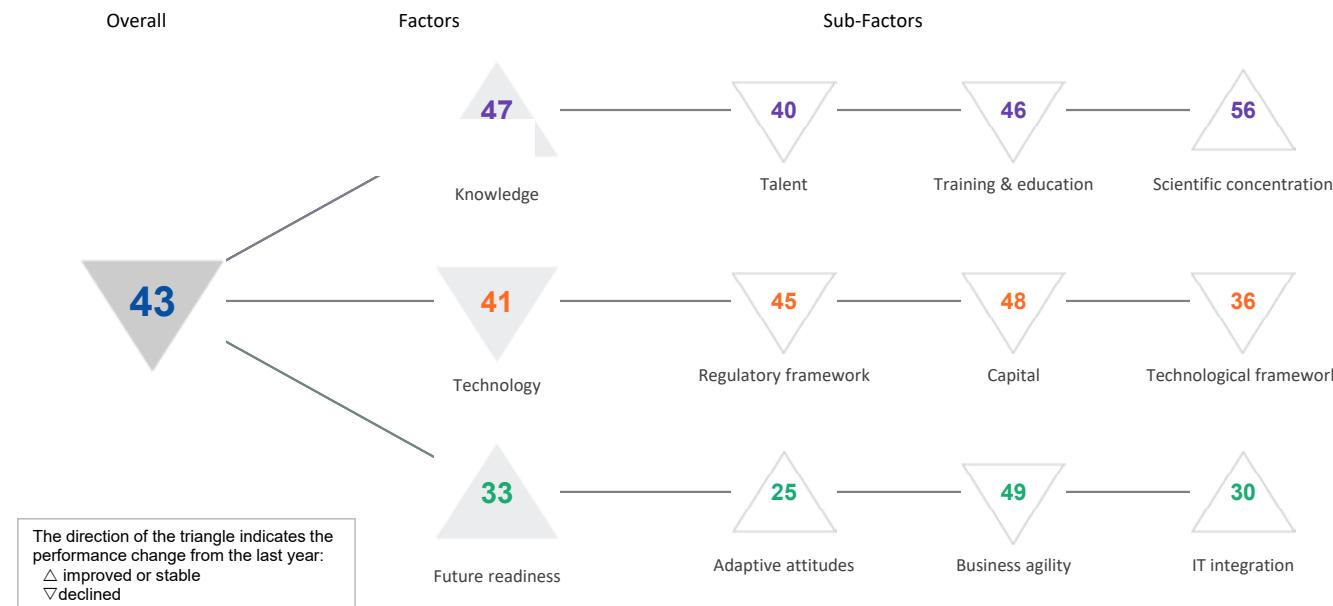
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	09	08	09	14	03
Training & education	10	03	02	03	01
Scientific concentration	05	04	05	06	14
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	09	Employee training	24	Total expenditure on R&D (%)	21
International experience	15	Total public expenditure on education	40	Total R&D personnel per capita	20
Management of cities	13	Higher education achievement	06	R&D productivity by publication	14
Digital/Technological skills	11	Pupil-teacher ratio (tertiary education)	07	High-tech patent grants	13
Foreign highly skilled personnel	09	Graduates in Sciences	12	AI-related patent publications	08
Net flow of international students	05	► Women with degrees	02	Robots in Education and R&D	09
Female researchers	-	Computer science education index	09	AI articles	24
► Scientific and technical employment	03				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	13	13	19	09	14
Capital	09	06	04	12	02
Technological framework	29	31	26	16	22
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
► Starting a business	02	IT & media stock market capitalization	25	Communications technology	25
▷ Enforcing contracts	53	Funding for technological development	04	Mobile broadband subscribers	07
Immigration laws	14	Banking and financial services	10	► Wireless broadband	59
Development & application of tech.	07	Country credit rating	10	Internet users	26
Scientific research legislation	10	Venture capital	07	Internet bandwidth speed	06
Intellectual property rights	12	Investment in Telecommunications	16	► High-tech exports (%)	33
AI policies passed into law	32	AI private investment	05	Secure internet servers	23

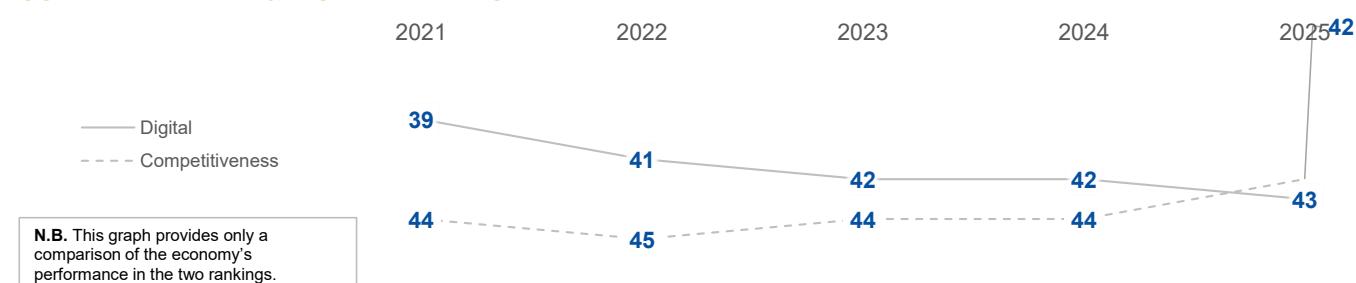
FUTURE READINESS

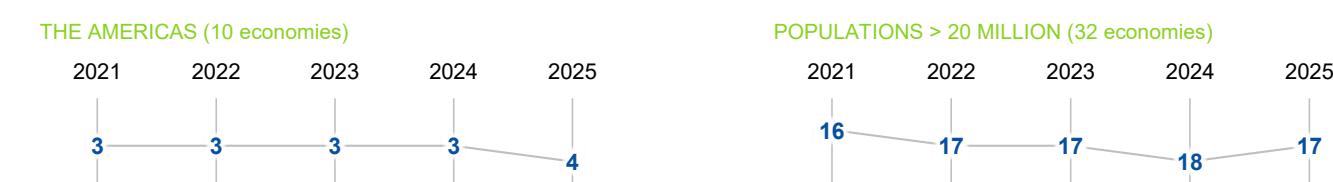

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	17	18	18	23	16
Business agility	20	19	24	29	12
IT integration	14	02	04	11	05

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	14	Opportunities and threats	14	▷ E-Government	40
Internet retailing	08	World robots distribution	14	Public-private partnerships	10
Tablet possession	16	Agility of companies	20	Cyber security	10
▷ Smartphone possession	50	Use of big data and analytics	04	Software piracy	13
Attitudes toward globalization	23	► Knowledge transfer	03	► Government cyber security capacity	04
Flexibility and adaptability	18	Entrepreneurial fear of failure	33	Privacy protection by law exists	24

CHILE

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)


OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	39	41	42	42	43
Knowledge	49	50	47	47	47
Technology	35	41	38	39	41
Future readiness	36	33	38	33	33

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

CHILE

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

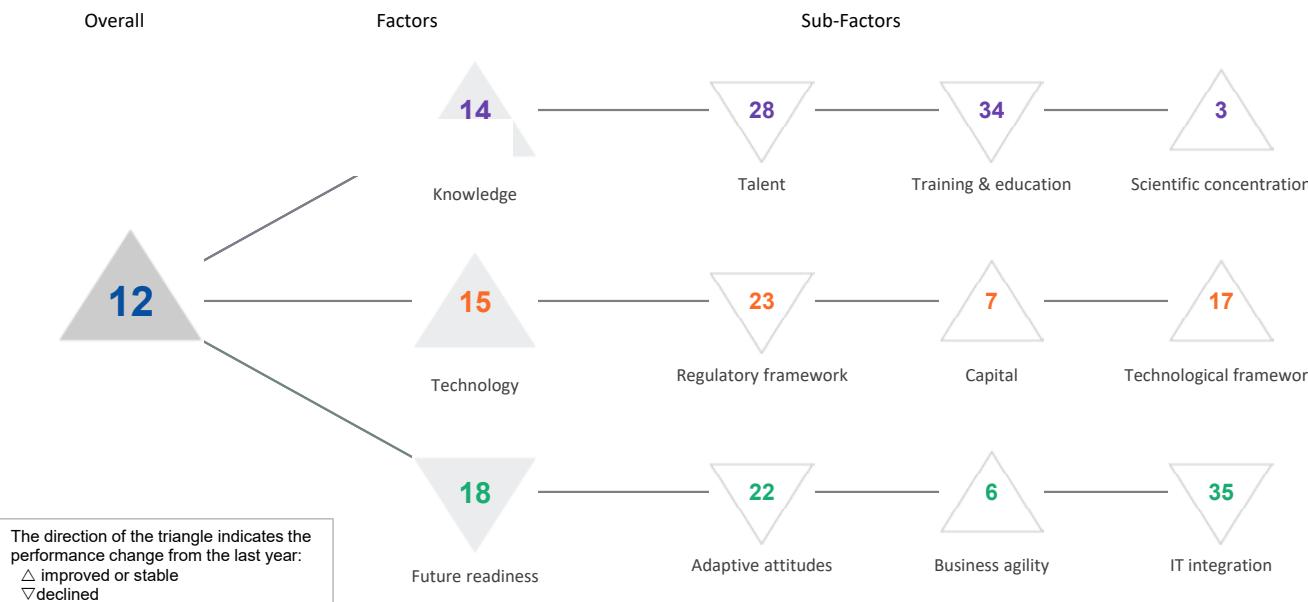
Sub-Factors	2021	2022	2023	2024	2025
Talent	36	39	41	38	40
Training & education	51	54	45	45	46
Scientific concentration	57	55	56	58	56

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	46	Employee training	59	Total expenditure on R&D (%)	53
International experience	21	Total public expenditure on education	29	Total R&D personnel per capita	52
Management of cities	39	Higher education achievement	37	R&D productivity by publication	24
Digital/Technological skills	31	Pupil-teacher ratio (tertiary education)	-	High-tech patent grants	54
Foreign highly skilled personnel	14	Graduates in Sciences	38	AI-related patent publications	35
Net flow of international students	43	Women with degrees	40	Robots in Education and R&D	40
Female researchers	43	Computer science education index	45	AI articles	47
Scientific and technical employment	40				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	33	41	37	33	45
Capital	38	43	50	46	48
Technological framework	36	36	30	35	36
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	30	IT & media stock market capitalization	54	Communications technology	21
Enforcing contracts	37	Funding for technological development	54	Mobile broadband subscribers	38
Immigration laws	13	Banking and financial services	30	Wireless broadband	48
Development & application of tech.	46	Country credit rating	34	Internet users	24
▷ Scientific research legislation	57	Venture capital	44	Internet bandwidth speed	11
Intellectual property rights	37	Investment in Telecommunications	11	High-tech exports (%)	41
AI policies passed into law	44	AI private investment	45	Secure internet servers	40

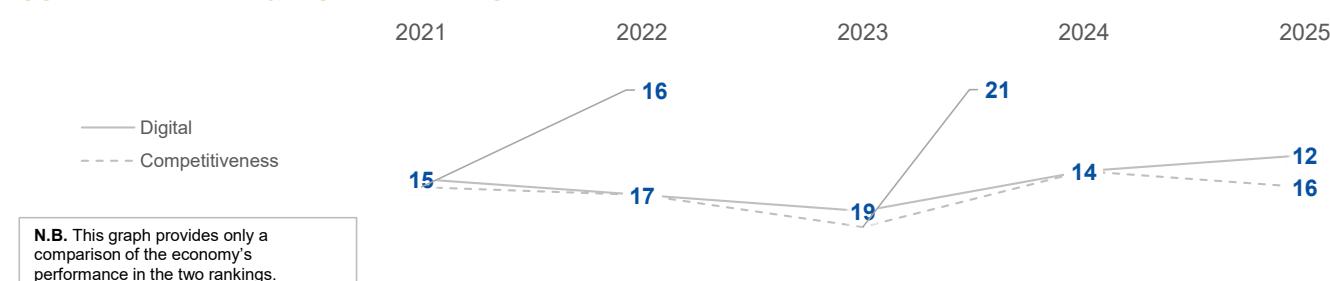
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	24	26	25	25	25
Business agility	54	43	52	40	49
IT integration	39	34	34	33	30

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	24	Opportunities and threats	34	E-Government	27
Internet retailing	37	World robots distribution	48	Public-private partnerships	20
Tablet possession	23	Agility of companies	26	Cyber security	50
▷ Smartphone possession	11	Use of big data and analytics	59	Software piracy	47
▷ Attitudes toward globalization	05	Knowledge transfer	54	▷ Government cyber security capacity	07
▷ Flexibility and adaptability	56	Entrepreneurial fear of failure	28	Privacy protection by law exists	39

CHINA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	15	17	19	14	12
Knowledge	06	17	21	15	14
Technology	20	18	22	15	15
Future readiness	17	15	13	14	18

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

CHINA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

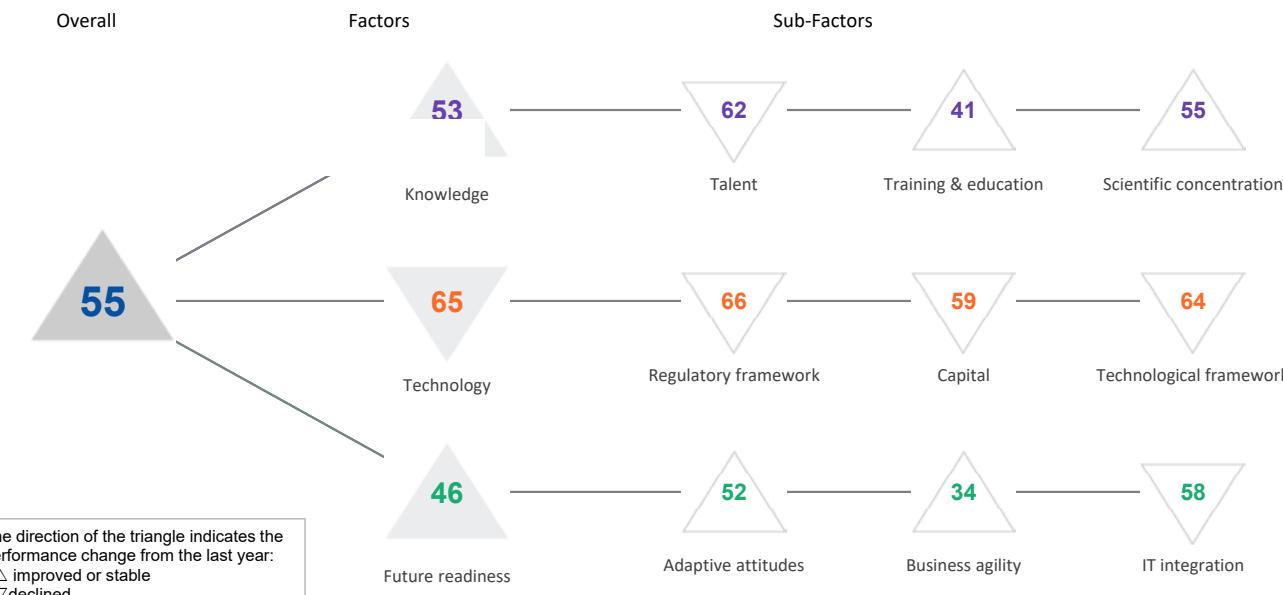
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	12	12	14	10	28
Training & education	35	33	43	32	34
Scientific concentration	01	09	09	10	03
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
► Educational assessment PISA - Math	01	Employee training	21	Total expenditure on R&D (%)	14
International experience	52	▷ Total public expenditure on education	57	Total R&D personnel per capita	34
Management of cities	05	Higher education achievement	10	► R&D productivity by publication	01
Digital/Technological skills	17	Pupil-teacher ratio (tertiary education)	44	High-tech patent grants	07
Foreign highly skilled personnel	52	Graduates in Sciences	-	► AI-related patent publications	01
Net flow of international students	53	Women with degrees	55	► Robots in Education and R&D	01
Female researchers	55	Computer science education index	03	AI articles	49
Scientific and technical employment	41				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	15	16	20	04	23
Capital	27	27	26	20	07
Technological framework	28	24	20	25	17
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	16	IT & media stock market capitalization	24	Communications technology	13
Enforcing contracts	05	Funding for technological development	18	Mobile broadband subscribers	01
Immigration laws	50	Banking and financial services	24	Wireless broadband	13
Development & application of tech.	22	Country credit rating	28	► Internet users	60
Scientific research legislation	23	Venture capital	31	Internet bandwidth speed	23
Intellectual property rights	39	Investment in Telecommunications	33	High-tech exports (%)	14
AI policies passed into law	30	AI private investment	02	Secure internet servers	52

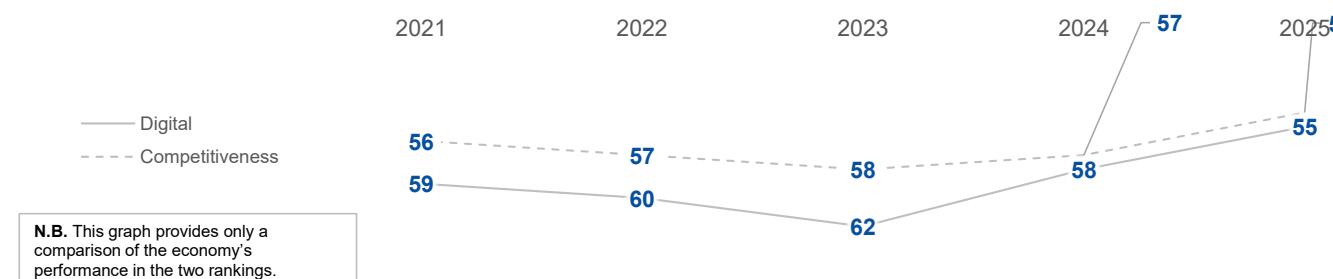
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	19	22	20	19	22
Business agility	03	03	04	08	06
IT integration	32	32	32	26	35

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	11	Opportunities and threats	12	E-Government	31
Internet retailing	20	► World robots distribution	01	Public-private partnerships	14
Tablet possession	40	Agility of companies	21	Cyber security	14
Smartphone possession	52	Use of big data and analytics	11	► Software piracy	58
Attitudes toward globalization	10	Knowledge transfer	24	Government cyber security capacity	02
Flexibility and adaptability	20	Entrepreneurial fear of failure	49	► Privacy protection by law exists	64

COLOMBIA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	59	60	62	58	55
Knowledge	56	57	54	55	53
Technology	60	61	62	61	65
Future readiness	53	56	60	49	46

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

THE AMERICAS (10 economies)

POPULATIONS > 20 MILLION (32 economies)

COLOMBIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

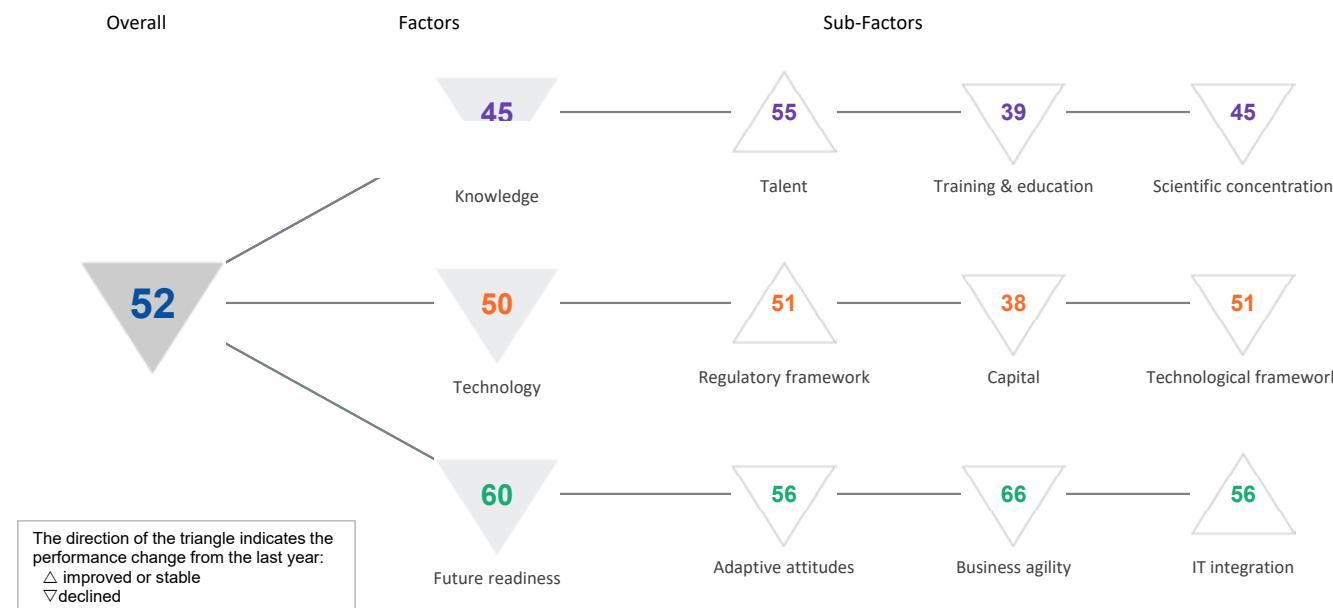
Sub-Factors	2021	2022	2023	2024	2025
Talent	57	58	57	56	62
Training & education	50	46	42	43	41
Scientific concentration	58	56	57	59	55

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	52	Employee training	22	Total expenditure on R&D (%)	54
International experience	49	► Total public expenditure on education	16	Total R&D personnel per capita	51
Management of cities	50	Higher education achievement	48	► R&D productivity by publication	17
Digital/Technological skills	51	Pupil-teacher ratio (tertiary education)	36	High-tech patent grants	55
Foreign highly skilled personnel	56	Graduates in Sciences	33	AI-related patent publications	35
Net flow of international students	56	Women with degrees	45	Robots in Education and R&D	37
Female researchers	29	Computer science education index	54	AI articles	50
Scientific and technical employment	43				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025	
Regulatory framework	61	59	62	59	66	
Capital	49	56	57	57	59	
Technological framework	59	61	62	60	64	
Regulatory framework		Rank	Capital		Technological framework	Rank
Starting a business	40		IT & media stock market capitalization	57	Communications technology	56
▷ Enforcing contracts	68		Funding for technological development	56	▷ Mobile broadband subscribers	62
Immigration laws	40		Banking and financial services	59	▷ Wireless broadband	67
Development & application of tech.	52		Country credit rating	55	Internet users	61
▷ Scientific research legislation	61		Venture capital	58	Internet bandwidth speed	43
Intellectual property rights	51		► Investment in Telecommunications	03	High-tech exports (%)	50
AI policies passed into law	53		AI private investment	44	Secure internet servers	53

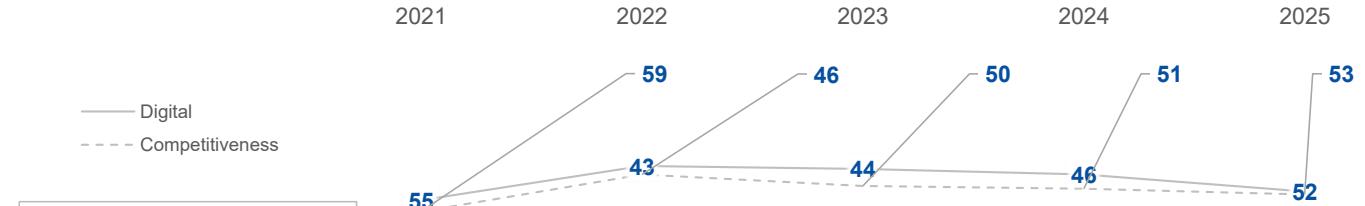
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	58	48	58	59	52
Business agility	47	54	59	36	34
IT integration	46	58	58	52	58

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	40	Opportunities and threats	51	E-Government	56
Internet retailing	53	World robots distribution	45	Public-private partnerships	32
Tablet possession	60	Agility of companies	28	Cyber security	56
Smartphone possession	34	Use of big data and analytics	35	Software piracy	40
Attitudes toward globalization	24	Knowledge transfer	43	▷ Government cyber security capacity	68
Flexibility and adaptability	36	► Entrepreneurial fear of failure	04	Privacy protection by law exists	05

CROATIA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	55	43	44	46	52
Knowledge	47	40	40	42	45
Technology	50	42	42	45	50
Future readiness	60	48	50	59	60

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

CROATIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

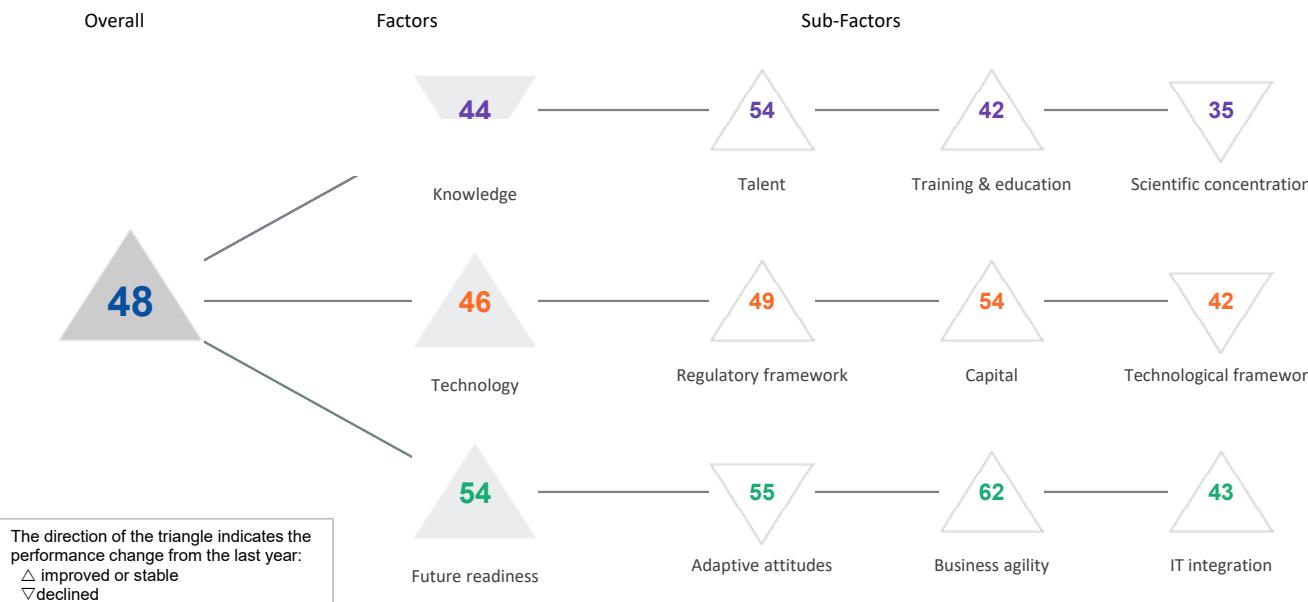
Sub-Factors	2021	2022	2023	2024	2025
Talent	61	52	54	57	55
Training & education	42	34	36	38	39
Scientific concentration	34	34	32	38	45

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	35	Employee training	64	Total expenditure on R&D (%)	31
International experience	66	► Total public expenditure on education	15	Total R&D personnel per capita	37
Management of cities	63	Higher education achievement	44	R&D productivity by publication	51
Digital/Technological skills	50	► Pupil-teacher ratio (tertiary education)	15	High-tech patent grants	21
▷ Foreign highly skilled personnel	66	Graduates in Sciences	16	AI-related patent publications	48
Net flow of international students	54	Women with degrees	42	Robots in Education and R&D	37
► Female researchers	13	Computer science education index	51	AI articles	34
Scientific and technical employment	30				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	56	46	47	54	51
Capital	50	35	33	33	38
Technological framework	41	42	44	47	51
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	49	IT & media stock market capitalization	22	Communications technology	41
Enforcing contracts	23	Funding for technological development	52	Mobile broadband subscribers	31
Immigration laws	56	Banking and financial services	63	Wireless broadband	53
▷ Development & application of tech.	66	Country credit rating	38	Internet users	54
Scientific research legislation	54	Venture capital	53	Internet bandwidth speed	59
Intellectual property rights	55	► Investment in Telecommunications	04	High-tech exports (%)	40
AI policies passed into law	25	AI private investment	27	Secure internet servers	31

FUTURE READINESS

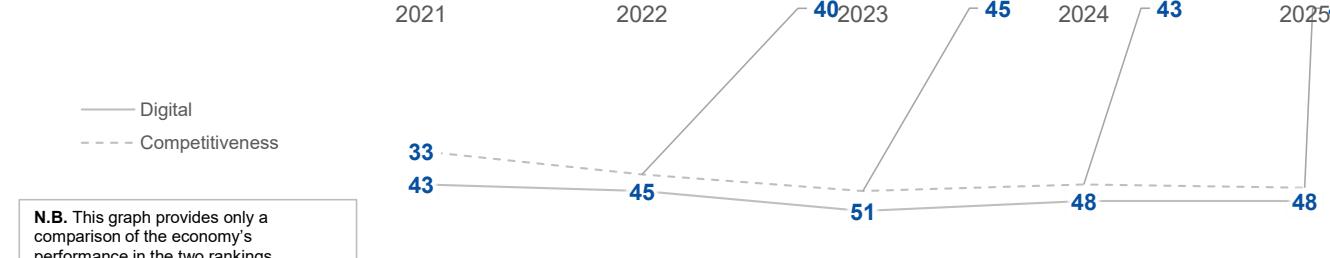

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	39	40	41	45	56
Business agility	64	58	57	62	66
IT integration	58	44	48	59	56

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
► E-Participation	14	Opportunities and threats	65	E-Government	28
Internet retailing	50	World robots distribution	45	▷ Public-private partnerships	67
Tablet possession	32	Agility of companies	64	Cyber security	46
Smartphone possession	27	Use of big data and analytics	65	Software piracy	43
▷ Attitudes toward globalization	68	Knowledge transfer	63	Government cyber security capacity	49
Flexibility and adaptability	67	Entrepreneurial fear of failure	26	Privacy protection by law exists	55

CYPRUS

DIGITAL TRENDS - OVERALL

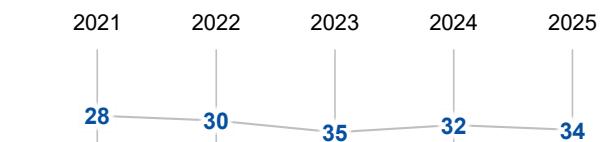
OVERALL PERFORMANCE (69 economies)

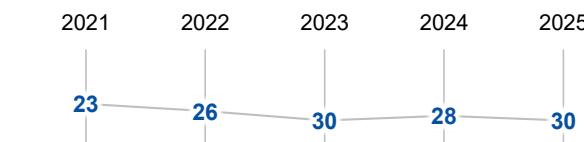


The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	43	45	51	48	48
Knowledge	39	39	48	43	44
Technology	53	52	53	51	46
Future readiness	34	39	53	54	54


COMPETITIVENESS & DIGITAL RANKINGS


N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

CYPRUS

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

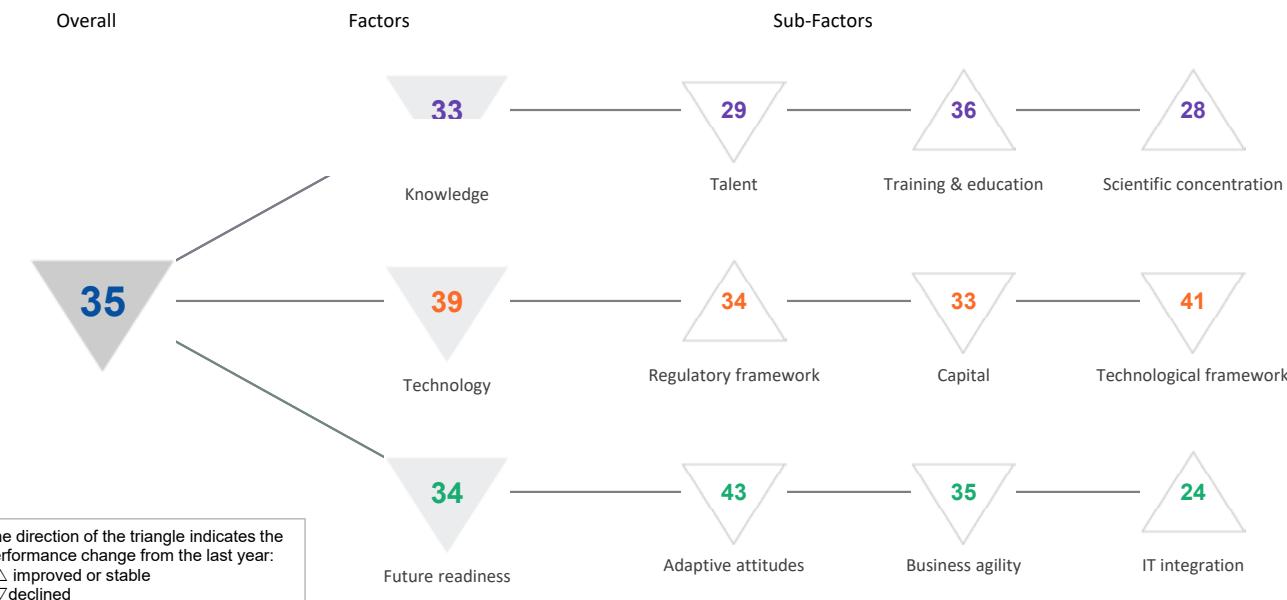
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	56	53	55	63	54
Training & education	29	40	44	44	42
Scientific concentration	29	26	40	25	35
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	43	Employee training	49	Total expenditure on R&D (%)	45
International experience	39	Total public expenditure on education	18	Total R&D personnel per capita	42
Management of cities	59	► Higher education achievement	09	R&D productivity by publication	54
Digital/Technological skills	55	Pupil-teacher ratio (tertiary education)	55	High-tech patent grants	18
Foreign highly skilled personnel	31	Graduates in Sciences	61	AI-related patent publications	39
▷ Net flow of international students	62	► Women with degrees	15	Robots in Education and R&D	-
Female researchers	26	Computer science education index	33	► AI articles	04
► Scientific and technical employment	06				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	47	50	53	60	49
Capital	54	54	56	58	54
Technological framework	52	49	49	36	42
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	28	IT & media stock market capitalization	41	Communications technology	48
▷ Enforcing contracts	63	Funding for technological development	53	Mobile broadband subscribers	41
Immigration laws	60	Banking and financial services	58	Wireless broadband	21
Development & application of tech.	53	Country credit rating	42	Internet users	36
Scientific research legislation	50	► Venture capital	62	Internet bandwidth speed	51
Intellectual property rights	45	► Investment in Telecommunications	12	High-tech exports (%)	23
AI policies passed into law	25	AI private investment	50	Secure internet servers	16

FUTURE READINESS

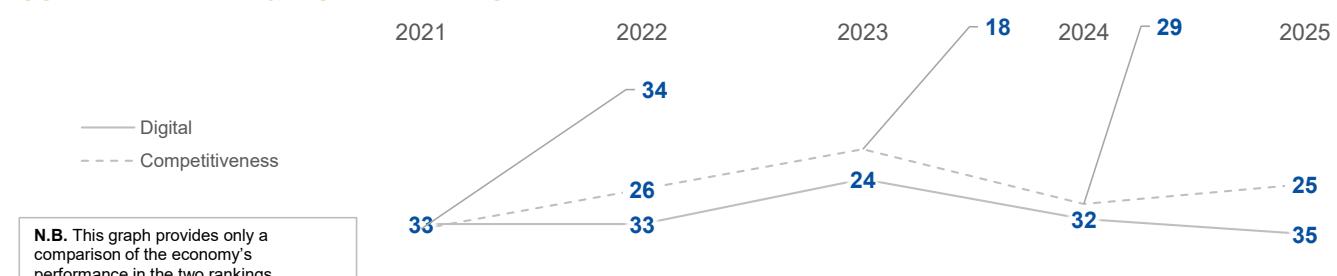

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	27	36	46	40	55
Business agility	50	53	63	66	62
IT integration	33	29	39	47	43

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	43	Opportunities and threats	59	E-Government	34
Internet retailing	-	World robots distribution	-	▷ Public-private partnerships	64
Tablet possession	-	Agility of companies	62	Cyber security	55
Smartphone possession	-	Use of big data and analytics	61	Software piracy	34
Attitudes toward globalization	55	Knowledge transfer	55	Government cyber security capacity	43
Flexibility and adaptability	50	Entrepreneurial fear of failure	39	Privacy protection by law exists	21

CZECH REPUBLIC

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)



The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	33	33	24	32	35
Knowledge	35	32	24	32	33
Technology	37	35	26	34	39
Future readiness	37	29	27	32	34

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

CZECH REPUBLIC

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

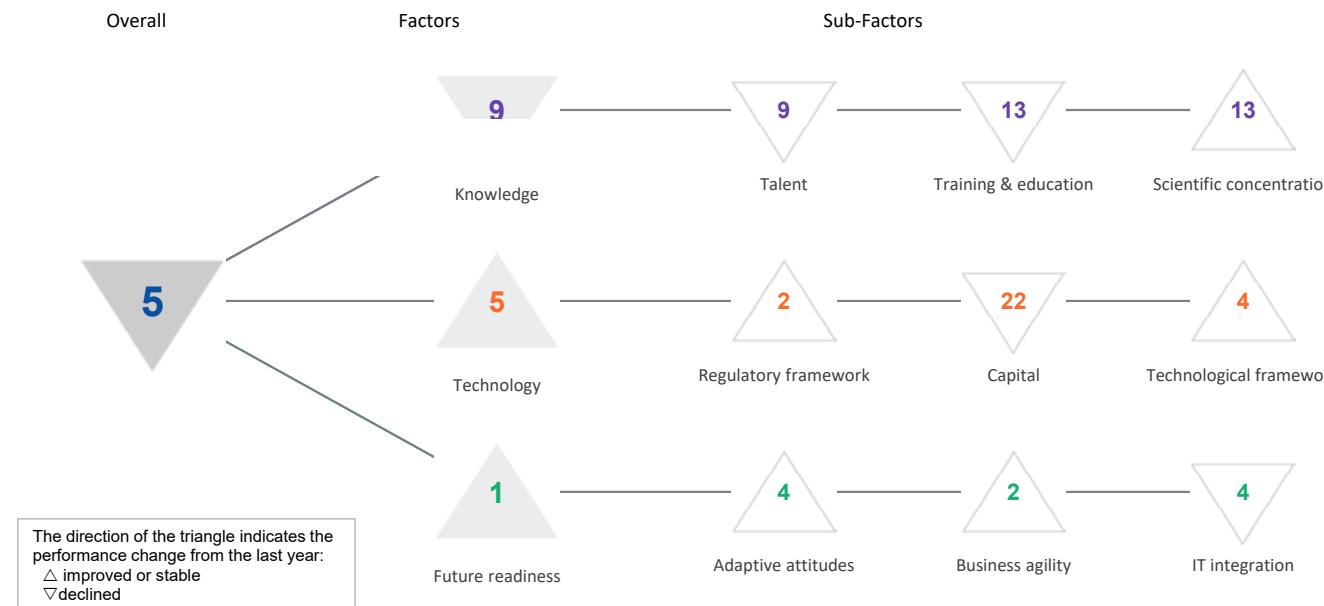
Sub-Factors	2021	2022	2023	2024	2025
Talent	28	22	17	26	29
Training & education	45	38	33	36	36
Scientific concentration	30	29	27	32	28

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	16	Employee training	20	Total expenditure on R&D (%)	20
► International experience	11	Total public expenditure on education	37	Total R&D personnel per capita	19
Management of cities	43	Higher education achievement	49	R&D productivity by publication	37
Digital/Technological skills	27	Pupil-teacher ratio (tertiary education)	32	High-tech patent grants	32
Foreign highly skilled personnel	38	Graduates in Sciences	27	AI-related patent publications	41
► Net flow of international students	10	Women with degrees	46	Robots in Education and R&D	15
▷ Female researchers	54	Computer science education index	36	AI articles	42
Scientific and technical employment	25				

TECHNOLOGY

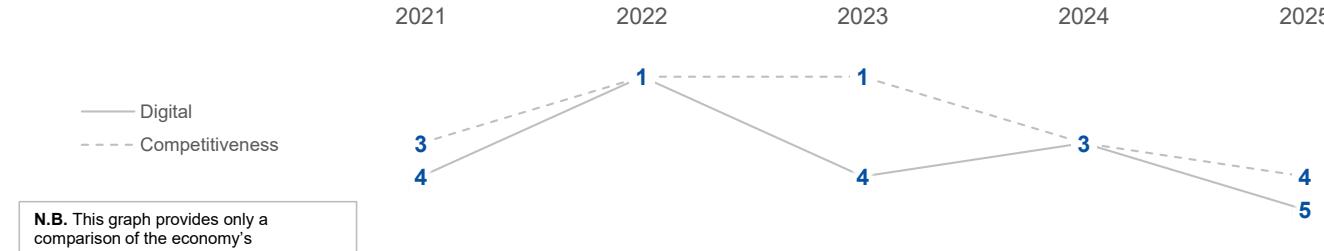
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	44	37	33	38	34
Capital	29	26	13	22	33
Technological framework	32	30	28	39	41
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
► Starting a business	59	IT & media stock market capitalization	23	Communications technology	50
▷ Enforcing contracts	55	Funding for technological development	29	Mobile broadband subscribers	35
► Immigration laws	11	Banking and financial services	42	Wireless broadband	28
Development & application of tech.	44	Country credit rating	23	Internet users	48
Scientific research legislation	20	Venture capital	17	Internet bandwidth speed	49
Intellectual property rights	47	Investment in Telecommunications	50	High-tech exports (%)	21
AI policies passed into law	15	AI private investment	49	Secure internet servers	13

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	35	31	34	34	43
Business agility	32	24	12	27	35
IT integration	36	36	30	30	24

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
► E-Participation	56	Opportunities and threats	37	E-Government	46
Internet retailing	24	World robots distribution	16	Public-private partnerships	45
Tablet possession	45	► Agility of companies	52	Cyber security	23
► Smartphone possession	12	Use of big data and analytics	25	Software piracy	19
Attitudes toward globalization	47	Knowledge transfer	36	Government cyber security capacity	21
Flexibility and adaptability	47	Entrepreneurial fear of failure	-	► Privacy protection by law exists	07

DENMARK


DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	04	01	04	03	05
Knowledge	08	06	09	07	09
Technology	09	07	07	06	05
Future readiness	02	01	03	02	01

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

DENMARK

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

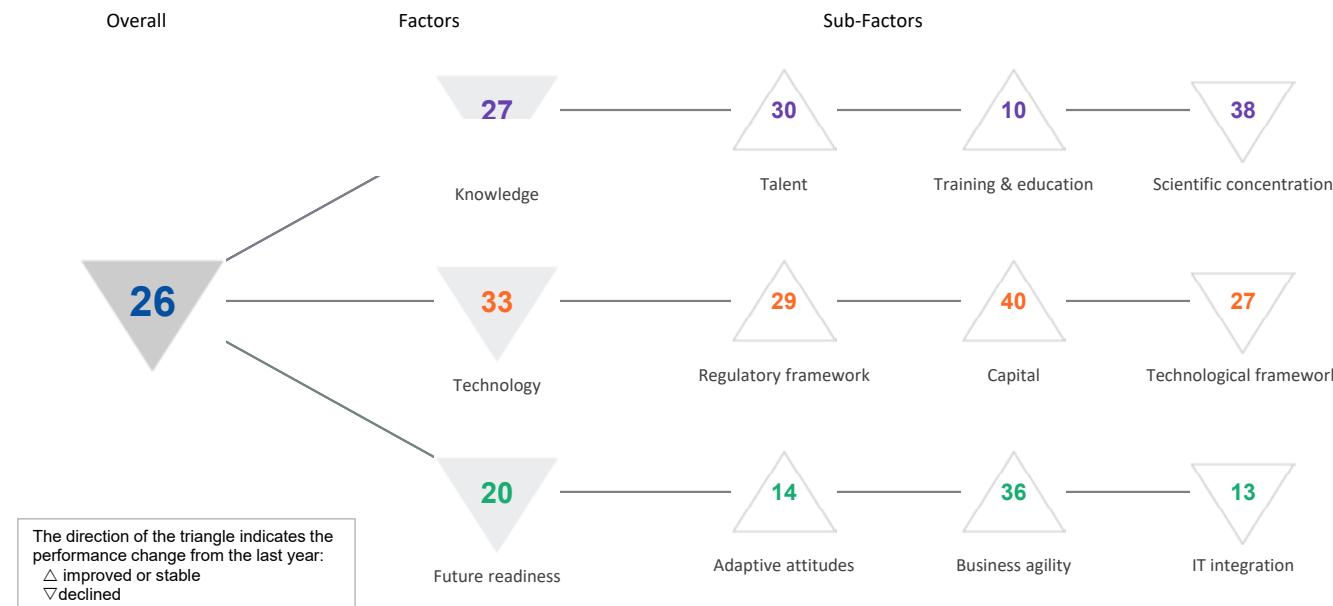
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	05	05	05	05	09
Training & education	04	07	12	12	13
Scientific concentration	17	17	20	14	13
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	12	Employee training	02	Total expenditure on R&D (%)	11
International experience	10	Total public expenditure on education	11	Total R&D personnel per capita	03
Management of cities	07	Higher education achievement	25	▷ R&D productivity by publication	47
Digital/Technological skills	07	Pupil-teacher ratio (tertiary education)	18	▷ High-tech patent grants	35
Foreign highly skilled personnel	12	Graduates in Sciences	25	AI-related patent publications	18
Net flow of international students	12	Women with degrees	23	Robots in Education and R&D	25
▷ Female researchers	35	Computer science education index	28	AI articles	05
Scientific and technical employment	19				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	04	06	10	07	02
Capital	13	14	10	09	22
Technological framework	06	06	06	08	04
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	25	▷ IT & media stock market capitalization	55	Communications technology	11
Enforcing contracts	13	Funding for technological development	12	▷ Mobile broadband subscribers	48
Immigration laws	25	Banking and financial services	09	Wireless broadband	12
Development & application of tech.	09	▷ Country credit rating	01	Internet users	09
Scientific research legislation	06	Venture capital	12	Internet bandwidth speed	03
Intellectual property rights	05	Investment in Telecommunications	21	High-tech exports (%)	29
AI policies passed into law	08	AI private investment	26	▷ Secure internet servers	01

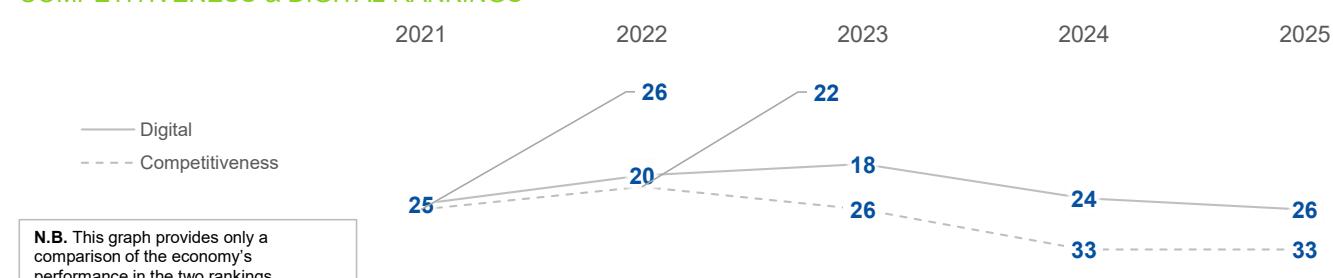
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	04	05	08	04	04
Business agility	07	01	06	03	02
IT integration	01	01	02	02	04

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
▷ E-Participation	01	Opportunities and threats	05	▷ E-Government	01
Internet retailing	07	World robots distribution	29	Public-private partnerships	13
Tablet possession	38	Agility of companies	04	Cyber security	19
Smartphone possession	44	Use of big data and analytics	02	Software piracy	08
▷ Attitudes toward globalization	01	Knowledge transfer	03	Government cyber security capacity	23
Flexibility and adaptability	10	Entrepreneurial fear of failure	-	Privacy protection by law exists	14

ESTONIA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	25	20	18	24	26
Knowledge	27	23	25	25	27
Technology	25	21	23	30	33
Future readiness	20	12	09	18	20

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

ESTONIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	29	30	28	33	30
Training & education	08	05	08	11	10
Scientific concentration	45	43	43	36	38

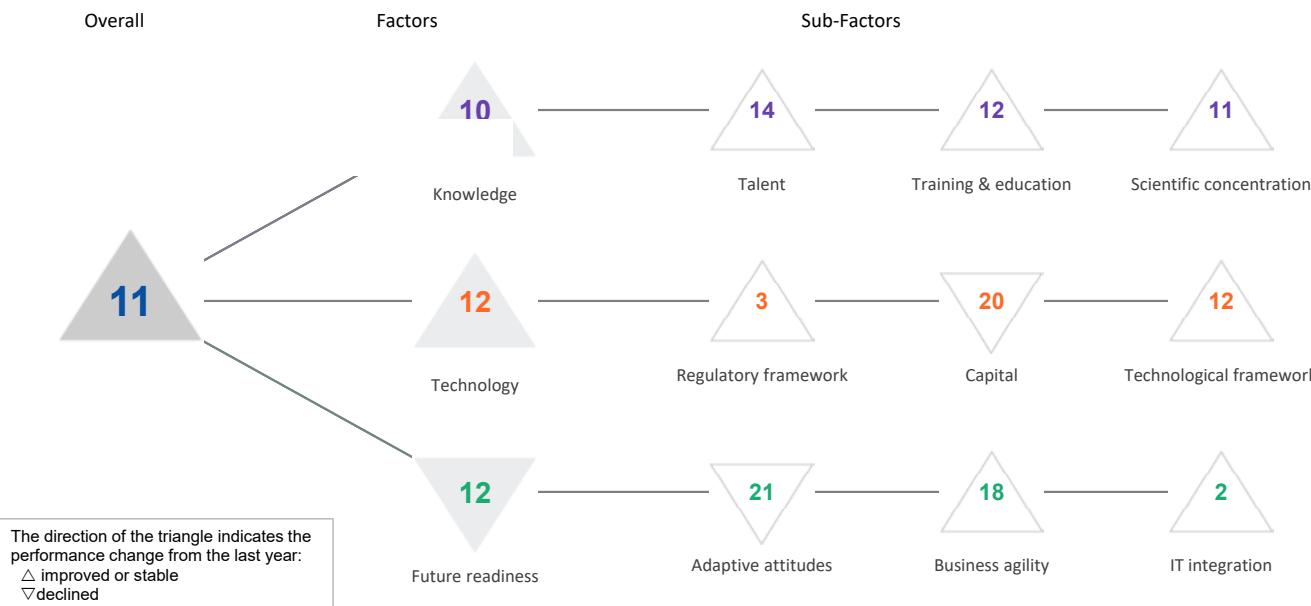
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	07	Employee training	14	Total expenditure on R&D (%)	19
▷ International experience	54	Total public expenditure on education	08	Total R&D personnel per capita	28
Management of cities	42	Higher education achievement	35	▷ R&D productivity by publication	60
Digital/Technological skills	29	Pupil-teacher ratio (tertiary education)	11	High-tech patent grants	11
Foreign highly skilled personnel	36	Graduates in Sciences	22	AI-related patent publications	52
Net flow of international students	32	Women with degrees	18	Robots in Education and R&D	49
Female researchers	22	Computer science education index	32	AI articles	17
Scientific and technical employment	28				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	28	30	18	29	29
Capital	33	29	35	43	40
Technological framework	20	21	13	20	27

Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	07	IT & media stock market capitalization	52	Communications technology	39
Enforcing contracts	08	Funding for technological development	34	▷ Mobile broadband subscribers	55
▷ Immigration laws	62	Banking and financial services	22	► Wireless broadband	04
Development & application of tech.	25	Country credit rating	27	Internet users	28
Scientific research legislation	47	Venture capital	28	Internet bandwidth speed	40
Intellectual property rights	27	Investment in Telecommunications	41	High-tech exports (%)	31
AI policies passed into law	12	AI private investment	40	Secure internet servers	10

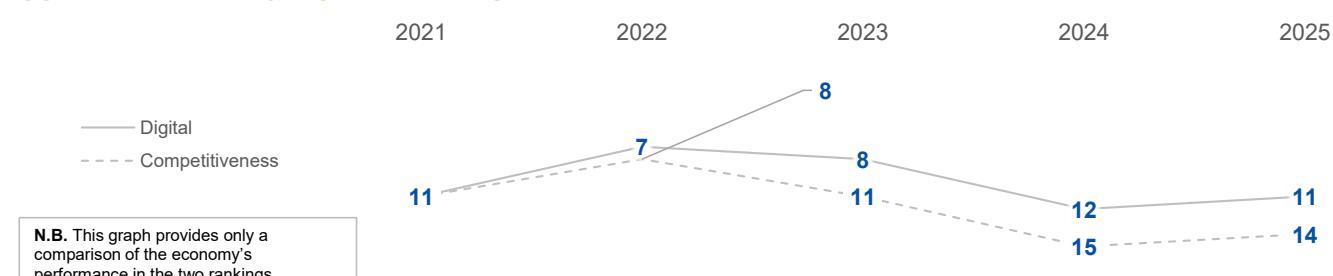
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	20	14	09	17	14
Business agility	25	20	23	37	36
IT integration	25	07	05	10	13

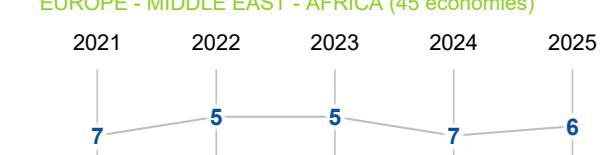
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	06	Opportunities and threats	25	► E-Government	02
Internet retailing	18	World robots distribution	47	▷ Public-private partnerships	65
▷ Tablet possession	05	Agility of companies	15	Cyber security	21
Smartphone possession	07	Use of big data and analytics	47	Software piracy	29
Attitudes toward globalization	40	Knowledge transfer	45	► Government cyber security capacity	01
Flexibility and adaptability	27	Entrepreneurial fear of failure	21	Privacy protection by law exists	18

FINLAND

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	11	07	08	12	11
Knowledge	09	09	11	12	10
Technology	12	08	09	16	12
Future readiness	09	06	05	09	12

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

FINLAND

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

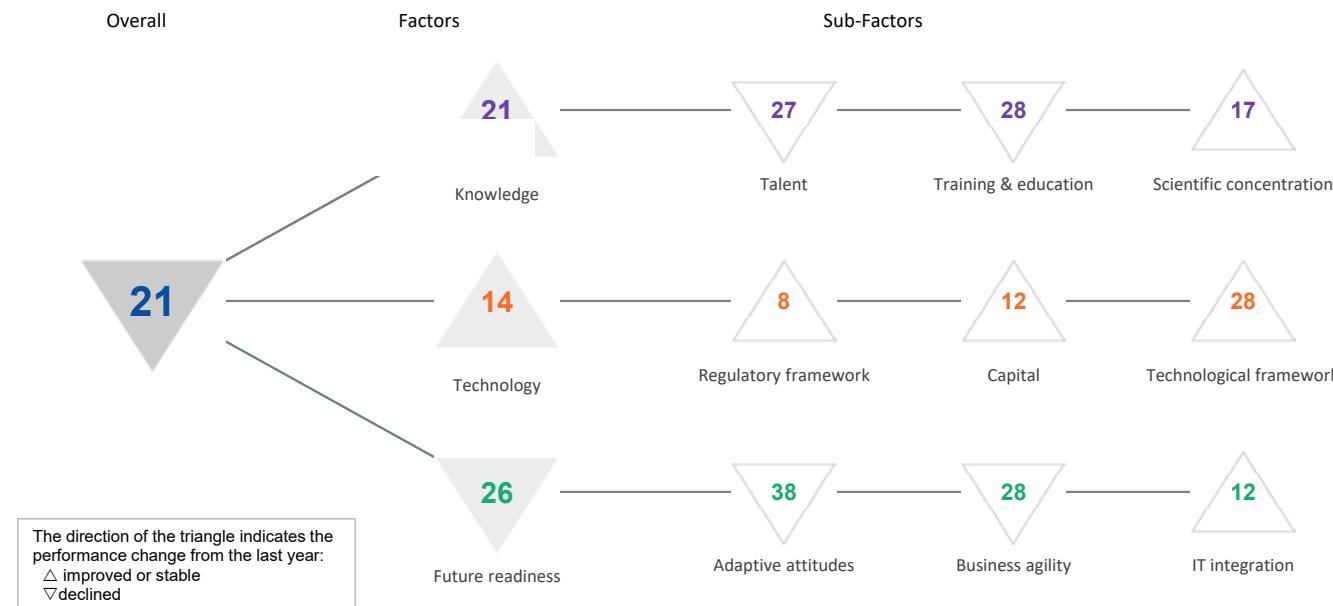
Sub-Factors	2021	2022	2023	2024	2025
Talent	10	09	11	16	14
Training & education	19	17	19	17	12
Scientific concentration	10	10	13	12	11

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	20	► Employee training	05	Total expenditure on R&D (%)	10
International experience	25	Total public expenditure on education	07	Total R&D personnel per capita	08
Management of cities	08	▷ Higher education achievement	43	▷ R&D productivity by publication	53
► Digital/Technological skills	05	Pupil-teacher ratio (tertiary education)	43	High-tech patent grants	10
▷ Foreign highly skilled personnel	47	Graduates in Sciences	13	AI-related patent publications	14
Net flow of international students	13	Women with degrees	19	Robots in Education and R&D	26
Female researchers	41	Computer science education index	14	AI articles	11
Scientific and technical employment	08				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	11	05	03	19	03
Capital	10	05	07	14	20
Technological framework	14	12	11	18	12
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	17	IT & media stock market capitalization	15	► Communications technology	02
Enforcing contracts	33	Funding for technological development	10	Mobile broadband subscribers	39
Immigration laws	26	Banking and financial services	14	Wireless broadband	08
Development & application of tech.	10	Country credit rating	14	Internet users	27
Scientific research legislation	05	Venture capital	22	Internet bandwidth speed	31
► Intellectual property rights	02	▷ Investment in Telecommunications	62	▷ High-tech exports (%)	45
AI policies passed into law	09	AI private investment	34	Secure internet servers	06

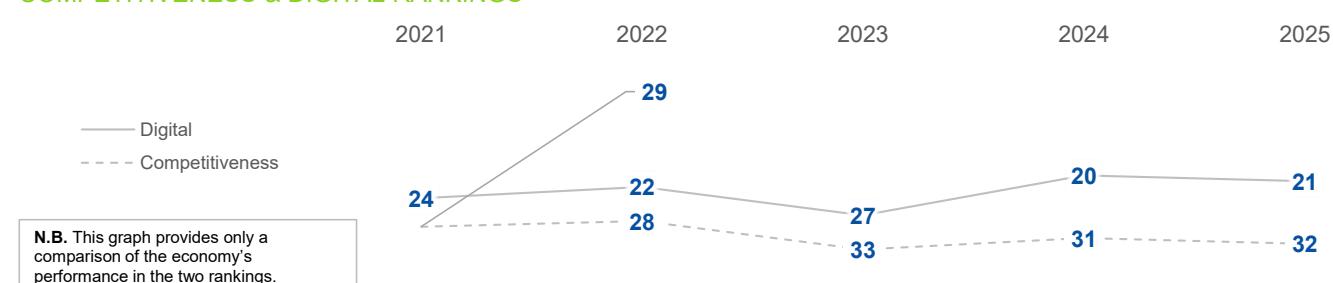
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	07	03	03	10	21
Business agility	21	16	21	24	18
IT integration	02	03	03	04	02

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	18	Opportunities and threats	36	E-Government	09
Internet retailing	14	World robots distribution	35	Public-private partnerships	09
Tablet possession	33	Agility of companies	23	► Cyber security	03
Smartphone possession	24	Use of big data and analytics	05	Software piracy	13
Attitudes toward globalization	14	Knowledge transfer	09	Government cyber security capacity	39
Flexibility and adaptability	41	Entrepreneurial fear of failure	19	Privacy protection by law exists	36

FRANCE

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	24	22	27	20	21
Knowledge	20	20	22	22	21
Technology	16	16	20	18	14
Future readiness	31	34	35	23	26

COMPETITIVENESS & DIGITAL RANKINGS



PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS > 20 MILLION (32 economies)

FRANCE

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

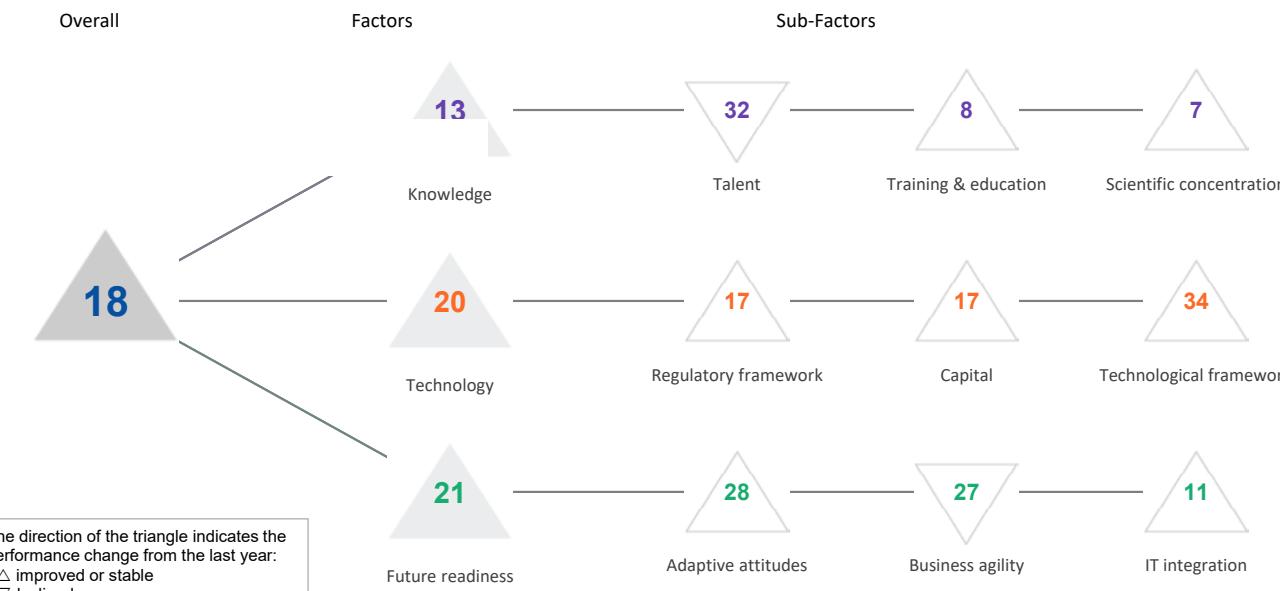
Sub-Factors	2021	2022	2023	2024	2025
Talent	23	23	24	25	27
Training & education	27	27	29	21	28
Scientific concentration	12	13	14	20	17

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	27	Employee training	41	Total expenditure on R&D (%)	16
International experience	37	Total public expenditure on education	24	Total R&D personnel per capita	24
Management of cities	24	Higher education achievement	21	R&D productivity by publication	18
Digital/Technological skills	30	Pupil-teacher ratio (tertiary education)	39	High-tech patent grants	17
Foreign highly skilled personnel	21	Graduates in Sciences	26	► AI-related patent publications	07
Net flow of international students	24	Women with degrees	27	► Robots in Education and R&D	05
► Female researchers	51	Computer science education index	11	AI articles	44
Scientific and technical employment	10				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	10	15	21	15	08
Capital	21	19	28	21	12
Technological framework	17	20	19	31	28
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	20	IT & media stock market capitalization	31	Communications technology	33
Enforcing contracts	15	Funding for technological development	26	Mobile broadband subscribers	34
Immigration laws	15	► Banking and financial services	47	Wireless broadband	41
Development & application of tech.	36	Country credit rating	23	► Internet users	46
Scientific research legislation	24	Venture capital	23	► Internet bandwidth speed	04
Intellectual property rights	25	► Investment in Telecommunications	07	High-tech exports (%)	19
► AI policies passed into law	03	AI private investment	06	Secure internet servers	20

FUTURE READINESS

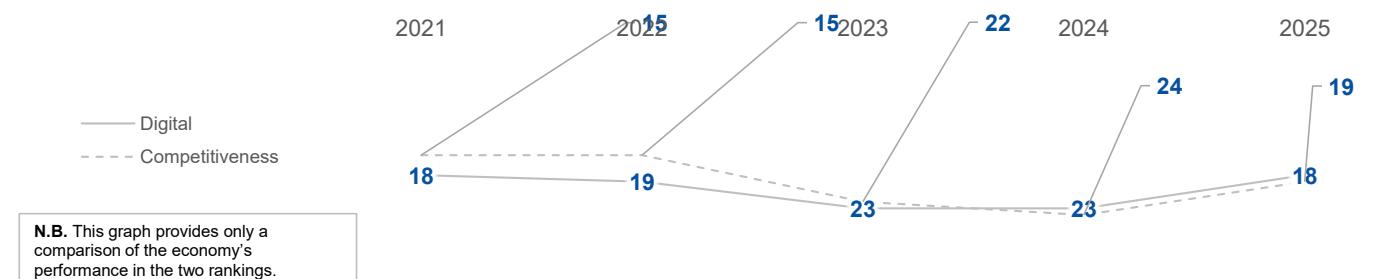

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	48	41	43	35	38
Business agility	33	38	41	23	28
IT integration	22	21	24	16	12

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	28	Opportunities and threats	44	E-Government	30
Internet retailing	21	World robots distribution	08	Public-private partnerships	27
Tablet possession	19	Agility of companies	38	Cyber security	25
Smartphone possession	32	Use of big data and analytics	32	Software piracy	19
► Attitudes toward globalization	60	Knowledge transfer	26	Government cyber security capacity	14
► Flexibility and adaptability	63	Entrepreneurial fear of failure	13	Privacy protection by law exists	10

GERMANY

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)



The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	18	19	23	23	18
Knowledge	14	11	14	20	13
Technology	31	27	34	29	20
Future readiness	18	19	24	22	21

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS > 20 MILLION (32 economies)

GERMANY

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

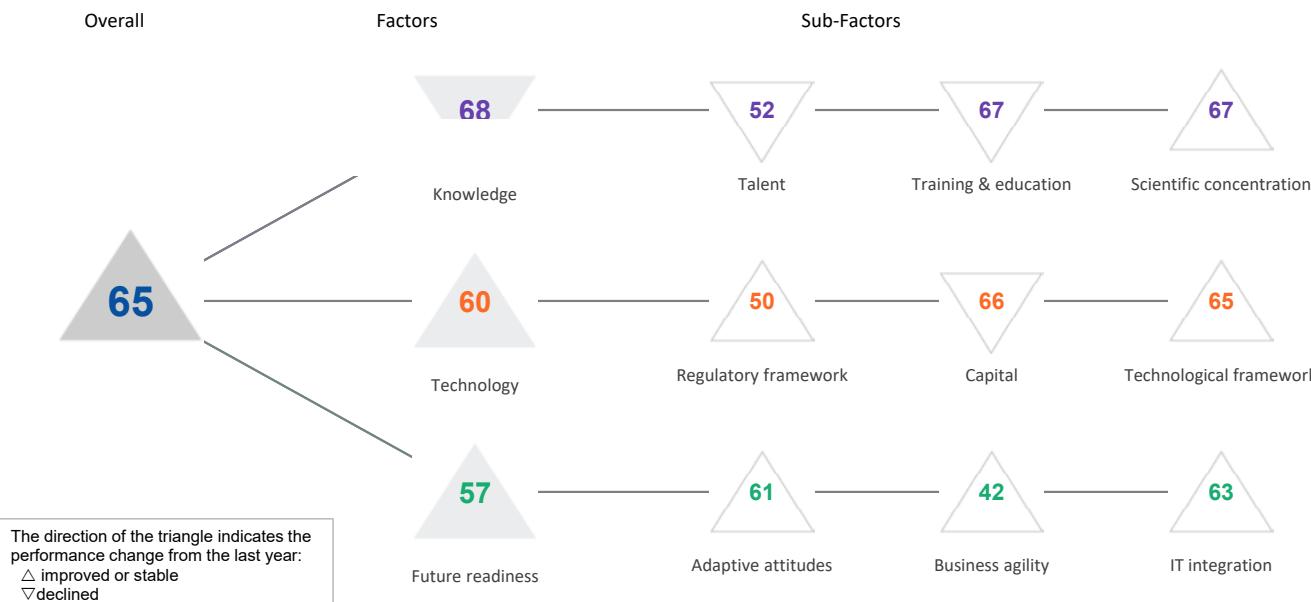
Sub-Factors	2021	2022	2023	2024	2025
Talent	21	20	26	29	32
Training & education	17	15	14	10	08
Scientific concentration	06	07	07	13	07

Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	25	Employee training	08	Total expenditure on R&D (%)	09
International experience	24	Total public expenditure on education	39	Total R&D personnel per capita	14
Management of cities	20	Higher education achievement	45	R&D productivity by publication	15
▷ Digital/Technological skills	58	Pupil-teacher ratio (tertiary education)	04	High-tech patent grants	16
Foreign highly skilled personnel	40	Graduates in Sciences	05	AI-related patent publications	05
Net flow of international students	14	Women with degrees	44	► Robots in Education and R&D	03
Female researchers	52	Computer science education index	04	AI articles	30
Scientific and technical employment	24				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	25	20	32	22	17
Capital	23	16	21	25	17
Technological framework	43	43	47	43	34
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	53	IT & media stock market capitalization	08	▷ Communications technology	53
Enforcing contracts	12	Funding for technological development	39	Mobile broadband subscribers	33
Immigration laws	36	Banking and financial services	34	Wireless broadband	45
Development & application of tech.	51	► Country credit rating	01	Internet users	32
Scientific research legislation	31	Venture capital	47	Internet bandwidth speed	37
▷ Intellectual property rights	03	Investment in Telecommunications	29	High-tech exports (%)	26
AI policies passed into law	02	AI private investment	07	Secure internet servers	08

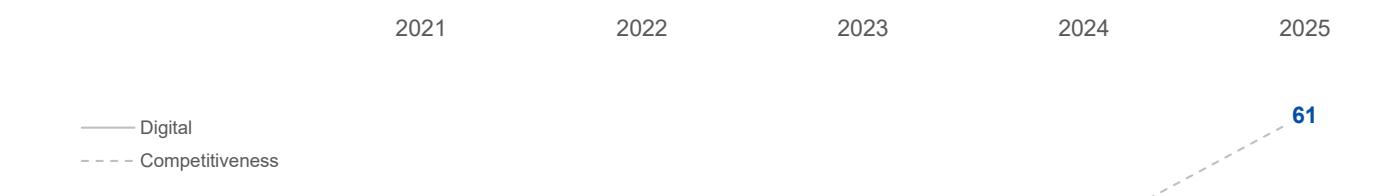
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	23	27	28	32	28
Business agility	15	15	20	19	27
IT integration	20	19	18	18	11

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
▷ E-Participation	03	▷ Opportunities and threats	60	E-Government	12
Internet retailing	13	World robots distribution	05	Public-private partnerships	44
Tablet possession	30	Agility of companies	41	Cyber security	28
Smartphone possession	53	▷ Use of big data and analytics	53	Software piracy	08
Attitudes toward globalization	26	Knowledge transfer	15	Government cyber security capacity	13
▷ Flexibility and adaptability	62	Entrepreneurial fear of failure	22	Privacy protection by law exists	35

GHANA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	-	-	-	65	65
Knowledge	-	-	-	66	68
Technology	-	-	-	66	60
Future readiness	-	-	-	65	57

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS > 20 MILLION (32 economies)

GHANA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

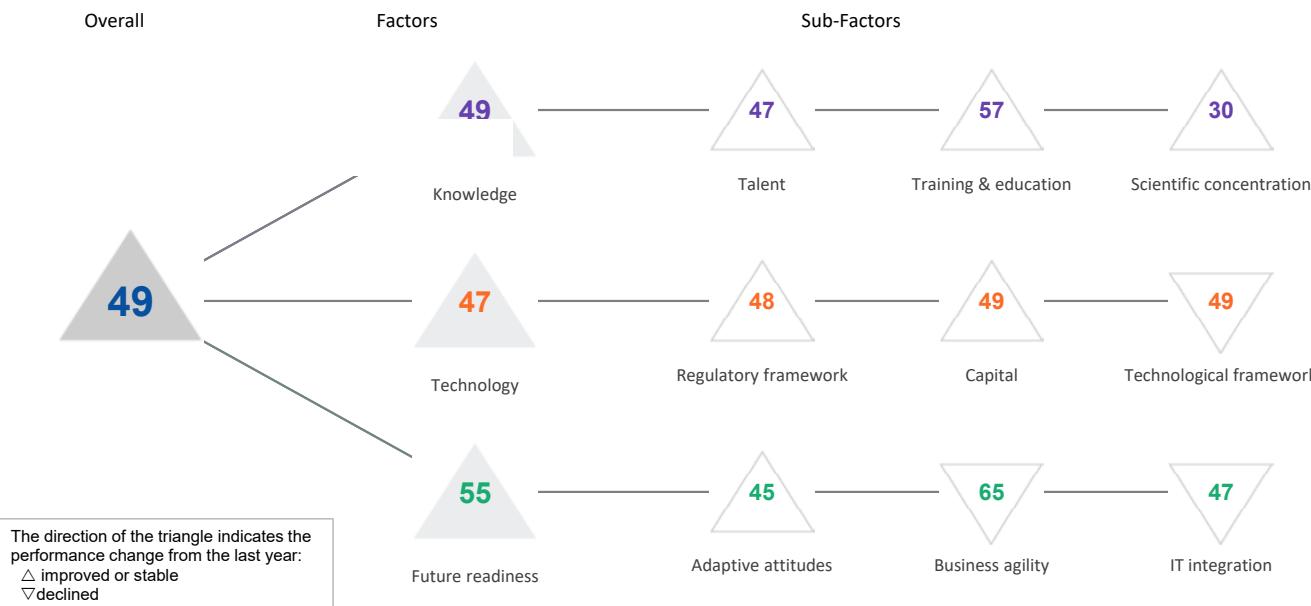
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	-	-	-	47	52
Training & education	-	-	-	65	67
Scientific concentration	-	-	-	67	67
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	52	Total expenditure on R&D (%)	-
International experience	35	Total public expenditure on education	64	Total R&D personnel per capita	-
Management of cities	36	Higher education achievement	64	R&D productivity by publication	-
Digital/Technological skills	52	Pupil-teacher ratio (tertiary education)	56	▷ High-tech patent grants	65
Foreign highly skilled personnel	32	Graduates in Sciences	58	AI-related patent publications	-
Net flow of international students	52	Women with degrees	63	Robots in Education and R&D	-
Female researchers	-	Computer science education index	60	AI articles	63
Scientific and technical employment	60				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	-	-	-	57	50
Capital	-	-	-	65	66
Technological framework	-	-	-	65	65
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	50	IT & media stock market capitalization	-	Communications technology	62
Enforcing contracts	59	Funding for technological development	50	▷ Mobile broadband subscribers	66
▷ Immigration laws	22	Banking and financial services	53	Wireless broadband	34
Development & application of tech.	35	▷ Country credit rating	67	Internet users	63
▷ Scientific research legislation	25	Venture capital	60	Internet bandwidth speed	64
Intellectual property rights	59	Investment in Telecommunications	46	High-tech exports (%)	62
AI policies passed into law	50	AI private investment	38	▷ Secure internet servers	68

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	-	-	-	64	61
Business agility	-	-	-	55	42
IT integration	-	-	-	64	63

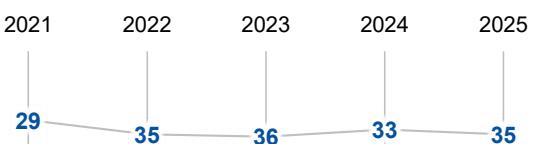
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	58	Opportunities and threats	33	E-Government	61
Internet retailing	61	World robots distribution	-	▷ Public-private partnerships	25
Tablet possession	61	Agility of companies	54	Cyber security	48
Smartphone possession	41	Use of big data and analytics	36	Software piracy	-
▷ Attitudes toward globalization	31	Knowledge transfer	41	▷ Government cyber security capacity	66
Flexibility and adaptability	28	Entrepreneurial fear of failure	-	Privacy protection by law exists	52

GREECE

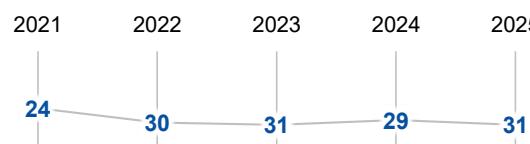
DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	44	50	52	49	49
Knowledge	45	47	51	50	49
Technology	46	47	47	48	47
Future readiness	43	60	57	56	55

COMPETITIVENESS & DIGITAL RANKINGS



PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

GREECE

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

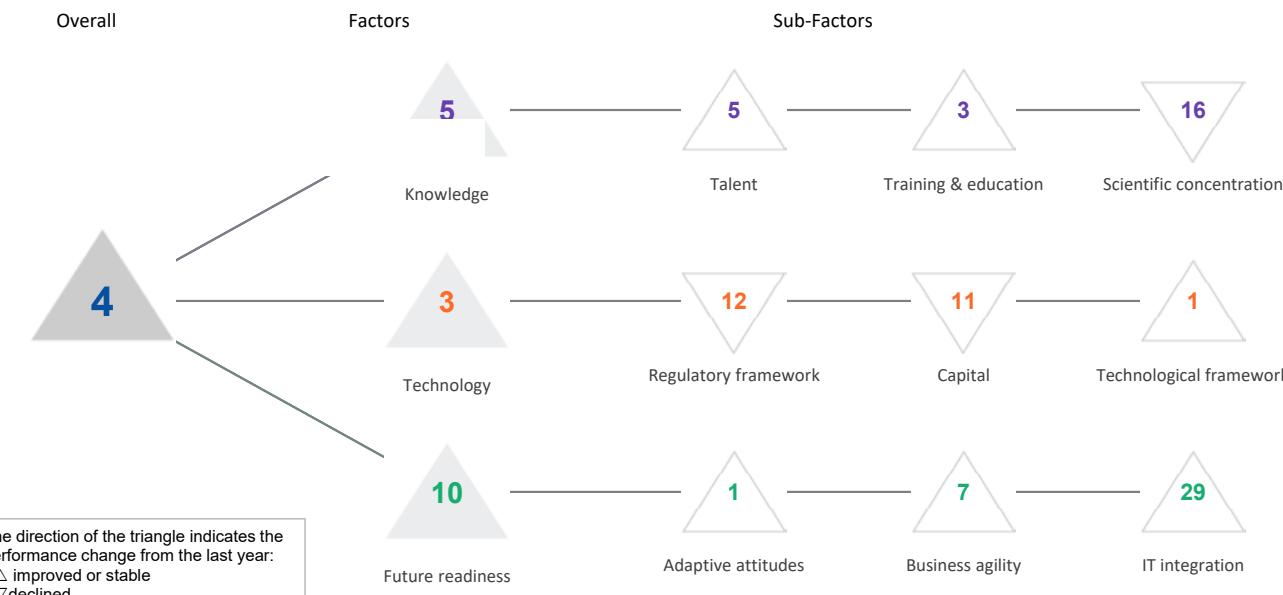
Sub-Factors	2021	2022	2023	2024	2025
Talent	42	49	53	54	47
Training & education	55	59	59	58	57
Scientific concentration	35	33	31	35	30

Sub-Factors	Rank	Sub-Factors	Rank	Sub-Factors	Rank
Talent	39	Training & education	54	Scientific concentration	28
Educational assessment PISA - Math	39	Employee training	54	Total expenditure on R&D (%)	28
International experience	53	Total public expenditure on education	47	Total R&D personnel per capita	27
Management of cities	56	Higher education achievement	32	R&D productivity by publication	34
Digital/Technological skills	48	▷ Pupil-teacher ratio (tertiary education)	62	High-tech patent grants	47
Foreign highly skilled personnel	58	Graduates in Sciences	23	AI-related patent publications	26
Net flow of international students	55	Women with degrees	36	Robots in Education and R&D	40
Female researchers	23	Computer science education index	22	AI articles	23
► Scientific and technical employment	12				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	43	42	46	50	48
Capital	52	46	37	51	49
Technological framework	50	50	52	48	49
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
► Starting a business	06	IT & media stock market capitalization	21	Communications technology	52
▷ Enforcing contracts	64	Funding for technological development	40	Mobile broadband subscribers	22
Immigration laws	53	▷ Banking and financial services	61	► Wireless broadband	16
Development & application of tech.	47	Country credit rating	52	Internet users	51
Scientific research legislation	49	Venture capital	49	▷ Internet bandwidth speed	58
Intellectual property rights	53	► Investment in Telecommunications	18	High-tech exports (%)	34
► AI policies passed into law	20	AI private investment	37	Secure internet servers	39

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	43	60	61	57	45
Business agility	51	61	60	60	65
IT integration	41	41	43	44	47

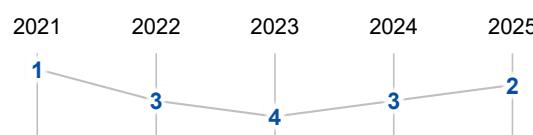
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	47	Opportunities and threats	58	E-Government	32
Internet retailing	31	World robots distribution	44	Public-private partnerships	51
Tablet possession	26	Agility of companies	48	Cyber security	52
Smartphone possession	58	▷ Use of big data and analytics	62	Software piracy	55
Attitudes toward globalization	48	Knowledge transfer	57	Government cyber security capacity	30
Flexibility and adaptability	37	Entrepreneurial fear of failure	45	Privacy protection by law exists	41

HONG KONG SAR

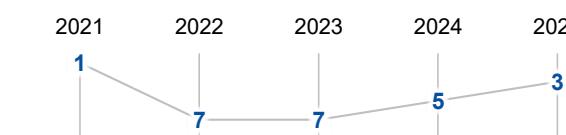
DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	02	09	10	07	04
Knowledge	05	07	06	05	05
Technology	01	02	02	03	03
Future readiness	10	18	17	15	10

COMPETITIVENESS & DIGITAL RANKINGS



PEER GROUPS RANKINGS

ASIA - PACIFIC (14 economies)

POPULATIONS < 20 MILLION (37 economies)

HONG KONG SAR

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	06	10	06	08	05
Training & education	01	02	05	04	03
Scientific concentration	14	18	08	08	16

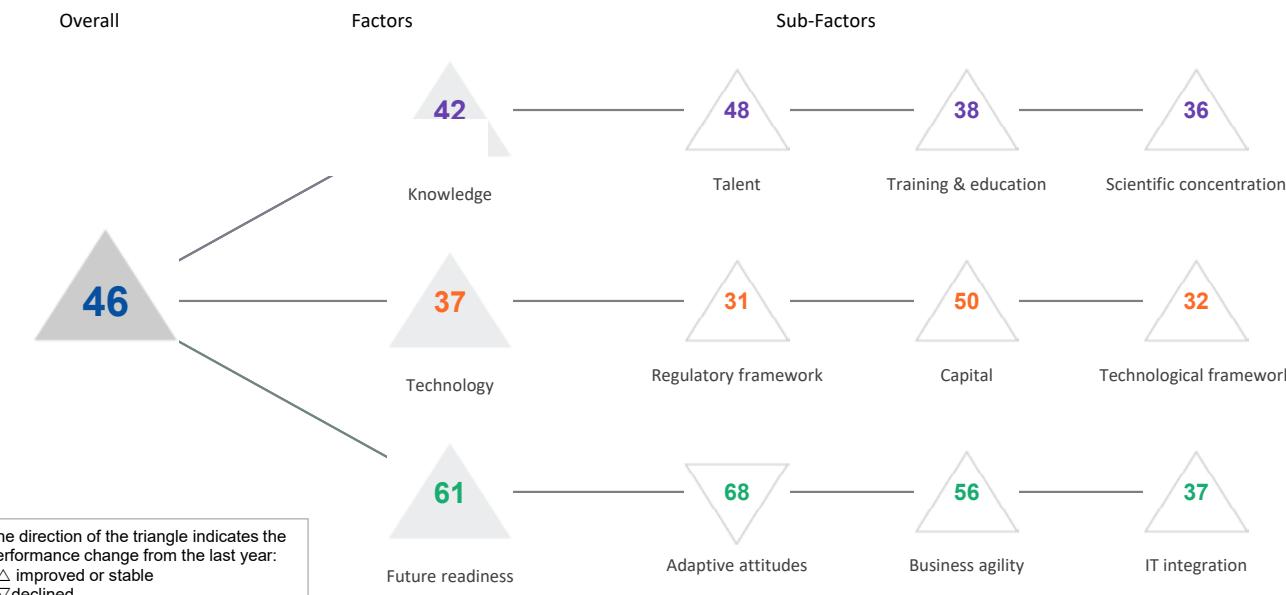
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	04	Employee training	18	Total expenditure on R&D (%)	36
International experience	06	▷ Total public expenditure on education	49	Total R&D personnel per capita	31
Management of cities	03	Higher education achievement	04	R&D productivity by publication	28
Digital/Technological skills	14	Pupil-teacher ratio (tertiary education)	28	► High-tech patent grants	02
Foreign highly skilled personnel	16	► Graduates in Sciences	01	AI-related patent publications	22
Net flow of international students	18	Women with degrees	-	Robots in Education and R&D	28
Female researchers	-	Computer science education index	17	AI articles	08
Scientific and technical employment	07				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	06	09	06	08	12
Capital	07	08	14	07	11
Technological framework	01	01	01	01	01

Sub-Factors	Rank	Capital	Rank	Technological framework	Rank
Starting a business	04	IT & media stock market capitalization	04	Communications technology	06
Enforcing contracts	24	Funding for technological development	09	Mobile broadband subscribers	12
Immigration laws	06	Banking and financial services	08	Wireless broadband	03
Development & application of tech.	08	Country credit rating	19	Internet users	18
Scientific research legislation	07	Venture capital	10	Internet bandwidth speed	19
Intellectual property rights	06	▷ Investment in Telecommunications	57	► High-tech exports (%)	02
AI policies passed into law	58	AI private investment	21	Secure internet servers	09

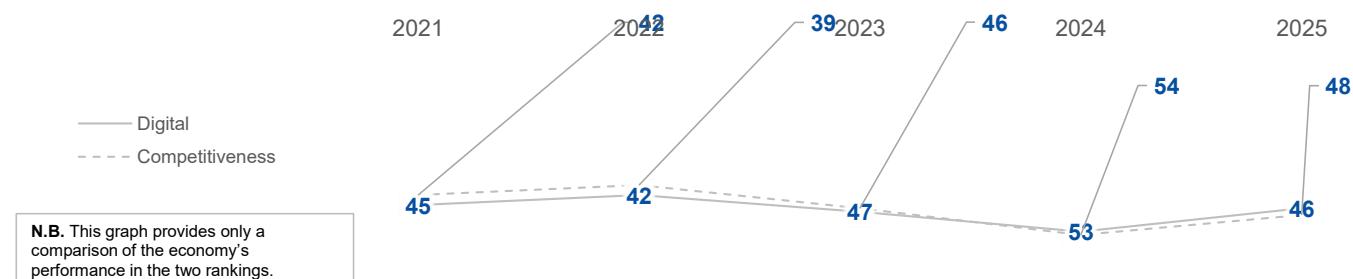
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	03	09	05	03	01
Business agility	09	11	16	12	07
IT integration	17	45	47	36	29

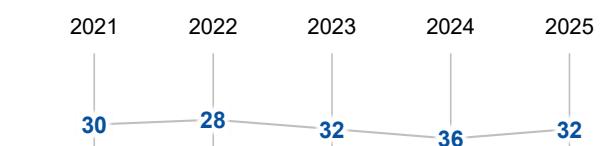
Sub-Factors	Rank	Business agility	Rank	IT integration	Rank
E-Participation	-	► Opportunities and threats	02	E-Government	-
Internet retailing	12	World robots distribution	37	Public-private partnerships	05
Tablet possession	11	Agility of companies	05	Cyber security	07
Smartphone possession	02	Use of big data and analytics	07	Software piracy	27
► Attitudes toward globalization	02	Knowledge transfer	06	► Government cyber security capacity	44
Flexibility and adaptability	04	Entrepreneurial fear of failure	-	► Privacy protection by law exists	49

HUNGARY

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	45	42	47	53	46
Knowledge	43	43	46	46	42
Technology	36	31	36	43	37
Future readiness	61	57	61	63	61

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

HUNGARY

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	43	40	45	55	48
Training & education	47	44	47	41	38
Scientific concentration	42	38	42	44	36

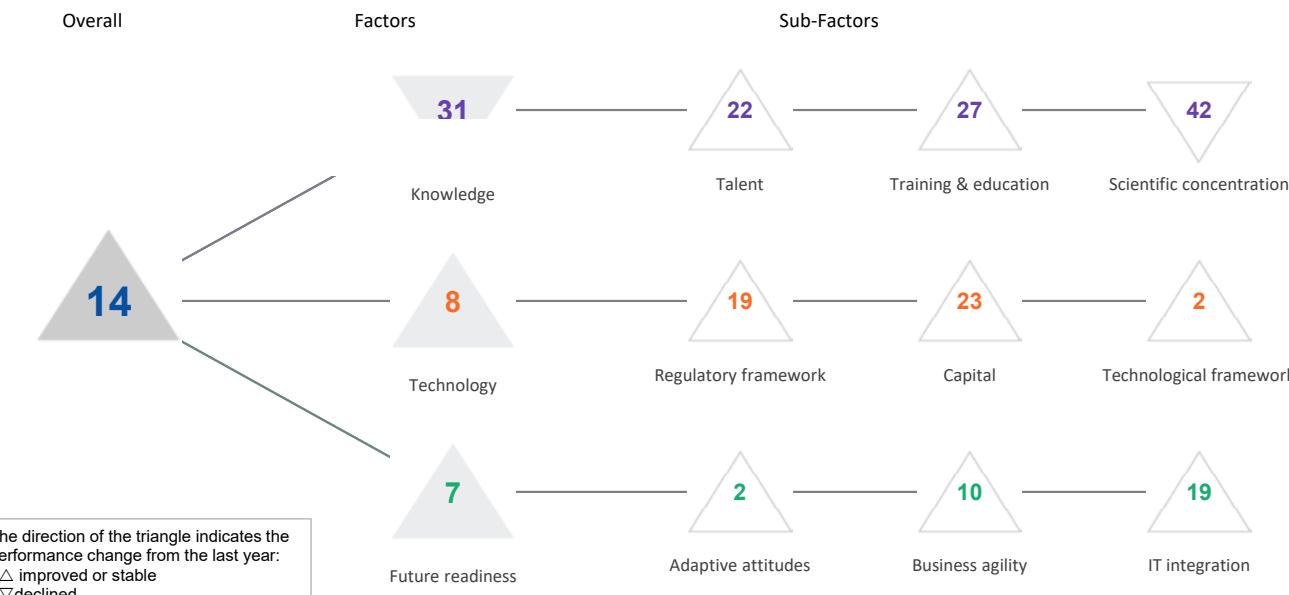
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	28	Employee training	42	Total expenditure on R&D (%)	32
International experience	42	Total public expenditure on education	19	Total R&D personnel per capita	29
Management of cities	48	Higher education achievement	51	R&D productivity by publication	42
Digital/Technological skills	53	► Pupil-teacher ratio (tertiary education)	13	High-tech patent grants	40
Foreign highly skilled personnel	60	Graduates in Sciences	39	AI-related patent publications	35
Net flow of international students	19	Women with degrees	37	Robots in Education and R&D	34
Female researchers	53	Computer science education index	42	AI articles	31
Scientific and technical employment	33				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	36	26	35	40	31
Capital	45	42	46	54	50
Technological framework	21	19	29	40	32

Sub-Factors	Rank	Capital	Rank	Technological framework	Rank
Starting a business	38	IT & media stock market capitalization	28	Communications technology	30
Enforcing contracts	21	Funding for technological development	42	Mobile broadband subscribers	32
Immigration laws	32	Banking and financial services	41	Wireless broadband	43
Development & application of tech.	40	Country credit rating	51	Internet users	35
Scientific research legislation	43	Venture capital	54	► Internet bandwidth speed	15
Intellectual property rights	33	Investment in Telecommunications	24	High-tech exports (%)	25
AI policies passed into law	20	AI private investment	54	► Secure internet servers	18

FUTURE READINESS

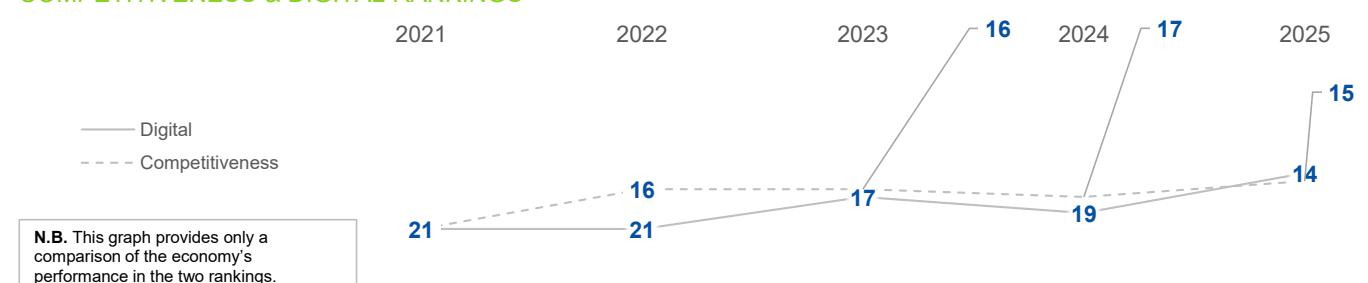

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	62	62	62	66	68
Business agility	62	48	55	65	56
IT integration	42	35	37	42	37

Sub-Factors	Rank	Business agility	Rank	IT integration	Rank
E-Participation	57	▷ Opportunities and threats	66	E-Government	51
Internet retailing	39	World robots distribution	25	Public-private partnerships	49
Tablet possession	49	▷ Agility of companies	63	Cyber security	34
Smartphone possession	61	▷ Use of big data and analytics	63	Software piracy	26
▷ Attitudes toward globalization	69	Knowledge transfer	50	Government cyber security capacity	29
▷ Flexibility and adaptability	68	► Entrepreneurial fear of failure	06	Privacy protection by law exists	09

ICELAND

DIGITAL TRENDS - OVERALL

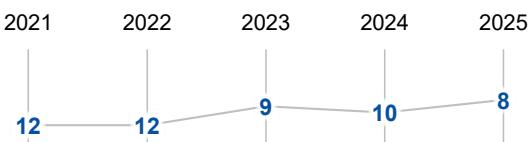
OVERALL PERFORMANCE (69 economies)



The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	21	21	17	19	14
Knowledge	33	31	32	30	31
Technology	10	11	08	12	08
Future readiness	25	21	14	16	07


COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

ICELAND

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

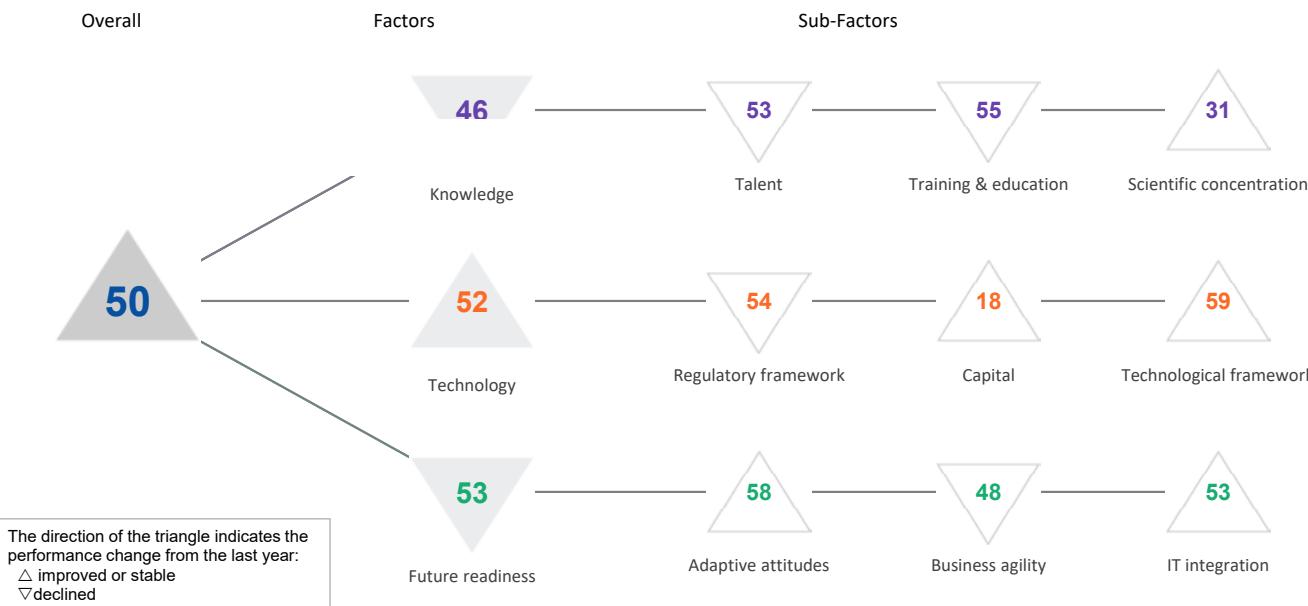
Sub-Factors	2021	2022	2023	2024	2025
Talent	35	24	32	35	22
Training & education	22	26	26	30	27
Scientific concentration	39	45	37	30	42

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	36	Employee training	33	Total expenditure on R&D (%)	13
International experience	48	Total public expenditure on education	04	Total R&D personnel per capita	09
Management of cities	32	Higher education achievement	33	▷ R&D productivity by publication	62
► Digital/Technological skills	03	Pupil-teacher ratio (tertiary education)	27	High-tech patent grants	49
Foreign highly skilled personnel	26	▷ Graduates in Sciences	57	AI-related patent publications	48
▷ Net flow of international students	57	Women with degrees	12	Robots in Education and R&D	53
Female researchers	16	Computer science education index	27	AI articles	07
Scientific and technical employment	21				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	14	11	11	20	19
Capital	26	17	27	24	23
Technological framework	03	05	04	02	02
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	32	IT & media stock market capitalization	-	Communications technology	05
Enforcing contracts	25	Funding for technological development	15	Mobile broadband subscribers	04
Immigration laws	04	Banking and financial services	03	Wireless broadband	14
Development & application of tech.	12	Country credit rating	29	Internet users	04
Scientific research legislation	17	Venture capital	14	► Internet bandwidth speed	01
Intellectual property rights	09	▷ Investment in Telecommunications	55	High-tech exports (%)	08
AI policies passed into law	53	AI private investment	41	Secure internet servers	12

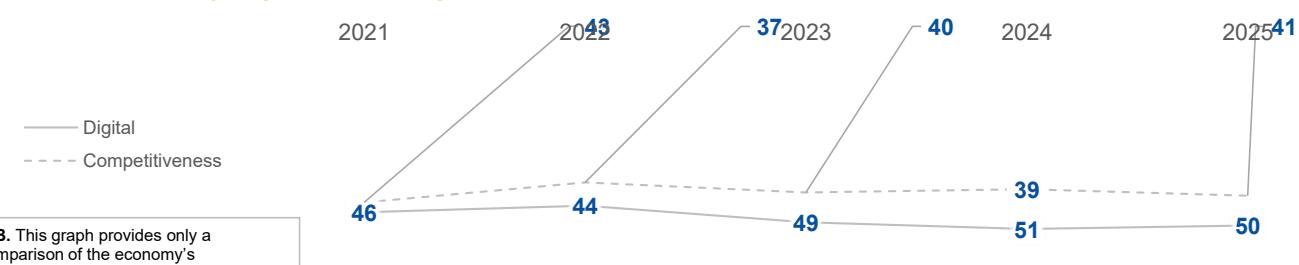
FUTURE READINESS

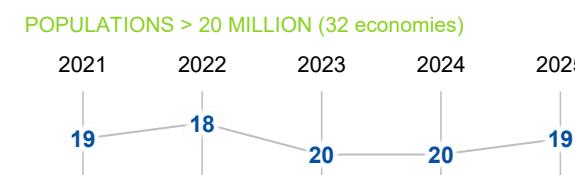
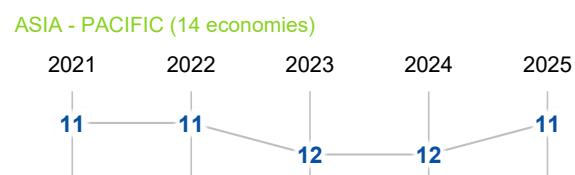

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	31	21	11	02	02
Business agility	16	12	13	16	10
IT integration	27	30	31	34	19

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	06	Opportunities and threats	06	E-Government	05
Internet retailing	23	World robots distribution	52	Public-private partnerships	48
Tablet possession	-	► Agility of companies	03	Cyber security	13
► Smartphone possession	01	Use of big data and analytics	09	Software piracy	34
Attitudes toward globalization	09	Knowledge transfer	16	Government cyber security capacity	24
► Flexibility and adaptability	01	Entrepreneurial fear of failure	-	Privacy protection by law exists	37

INDIA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)



OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	46	44	49	51	50
Knowledge	41	46	45	45	46
Technology	44	43	50	53	52
Future readiness	50	42	51	52	53

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

INDIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

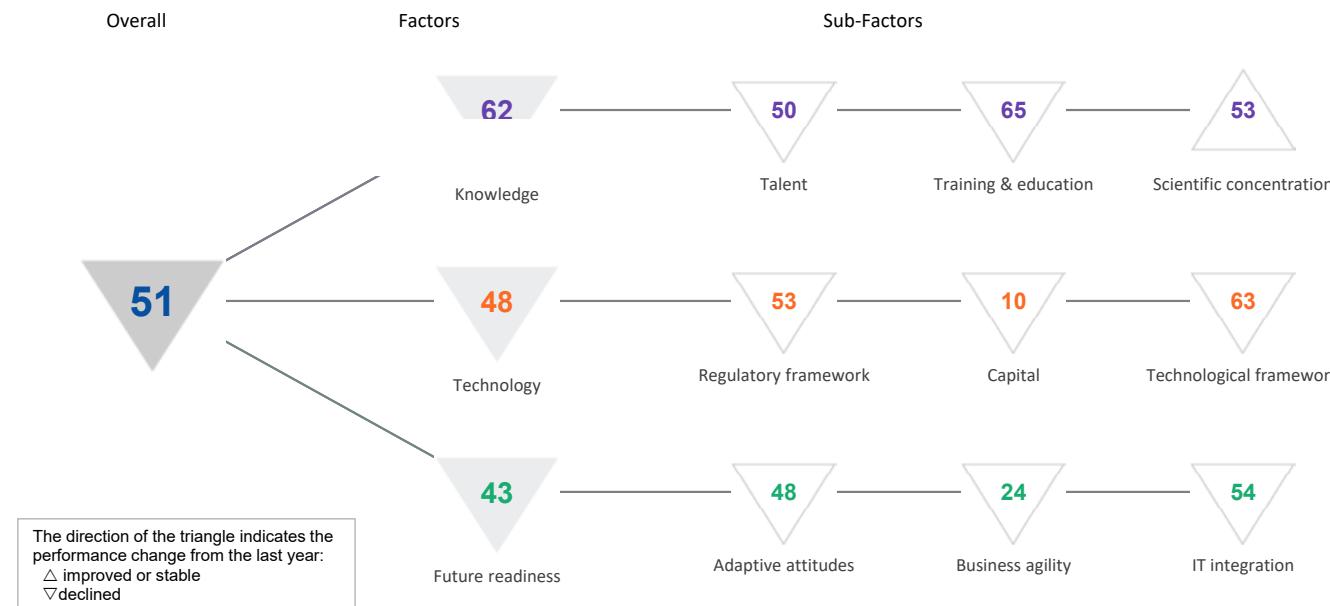
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	38	34	34	30	53
Training & education	43	56	48	52	55
Scientific concentration	47	50	52	53	31
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	44	Total expenditure on R&D (%)	47
International experience	43	Total public expenditure on education	59	Total R&D personnel per capita	56
Management of cities	47	Higher education achievement	57	► R&D productivity by publication	02
Digital/Technological skills	22	Pupil-teacher ratio (tertiary education)	54	High-tech patent grants	41
Foreign highly skilled personnel	46	Graduates in Sciences	21	► AI-related patent publications	15
Net flow of international students	51	Women with degrees	60	Robots in Education and R&D	23
Female researchers	-	► Computer science education index	06	▷ AI articles	61
▷ Scientific and technical employment	61				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	52	48	52	49	54
Capital	04	01	23	39	18
Technological framework	62	58	60	63	59
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	60	► IT & media stock market capitalization	13	Communications technology	32
▷ Enforcing contracts	67	Funding for technological development	27	Mobile broadband subscribers	52
Immigration laws	37	Banking and financial services	27	▷ Wireless broadband	63
Development & application of tech.	21	Country credit rating	52	▷ Internet users	66
Scientific research legislation	36	Venture capital	19	Internet bandwidth speed	53
Intellectual property rights	49	Investment in Telecommunications	17	High-tech exports (%)	35
AI policies passed into law	35	AI private investment	11	Secure internet servers	54

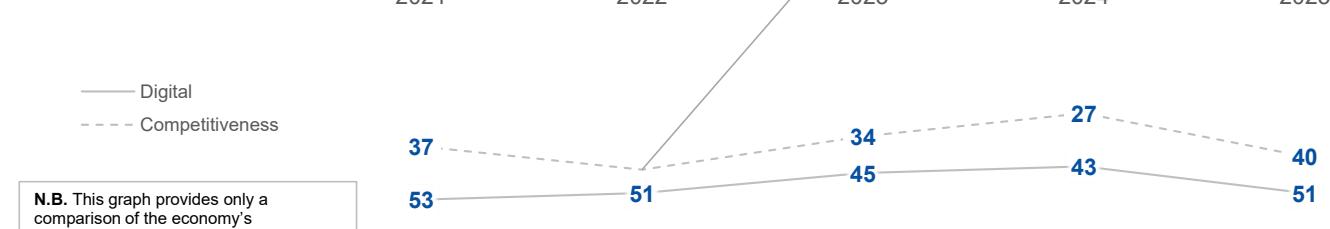
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	55	56	60	62	58
Business agility	36	25	30	34	48
IT integration	51	48	52	57	53

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	49	Opportunities and threats	21	E-Government	60
Internet retailing	58	► World robots distribution	12	Public-private partnerships	29
Tablet possession	55	Agility of companies	28	Cyber security	32
Smartphone possession	59	Use of big data and analytics	22	Software piracy	49
Attitudes toward globalization	17	Knowledge transfer	42	Government cyber security capacity	28
Flexibility and adaptability	24	Entrepreneurial fear of failure	51	Privacy protection by law exists	60

INDONESIA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	53	51	45	43	51
Knowledge	60	60	60	53	62
Technology	49	45	39	40	48
Future readiness	48	52	43	30	43

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

INDONESIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths ▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	48	45	42	27	50
Training & education	64	62	61	63	65
Scientific concentration	44	54	59	60	53

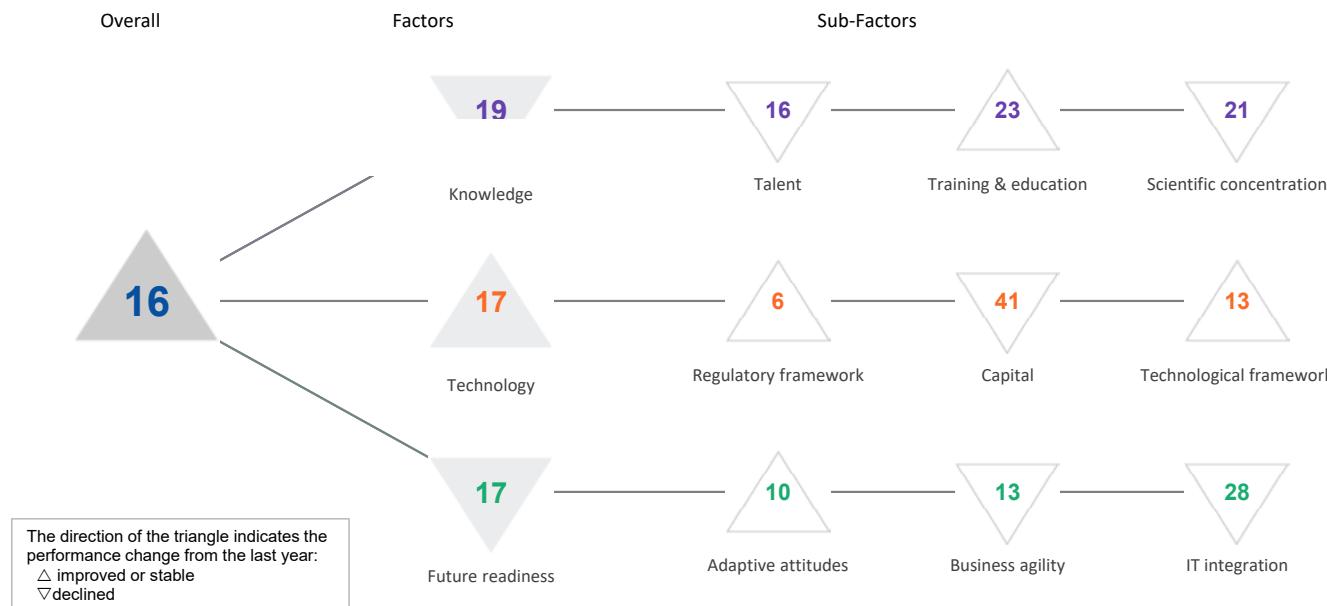
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	55	Employee training	29	Total expenditure on R&D (%)	59
International experience	27	▷ Total public expenditure on education	66	Total R&D personnel per capita	-
Management of cities	38	Higher education achievement	61	► R&D productivity by publication	03
Digital/Technological skills	42	Pupil-teacher ratio (tertiary education)	59	▷ High-tech patent grants	64
Foreign highly skilled personnel	27	Graduates in Sciences	-	AI-related patent publications	52
Net flow of international students	-	Women with degrees	59	Robots in Education and R&D	43
Female researchers	19	Computer science education index	47	AI articles	64
Scientific and technical employment	62				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	50	49	45	45	53
Capital	25	18	03	01	10
Technological framework	55	56	57	59	63

Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	63	► IT & media stock market capitalization	14	Communications technology	49
Enforcing contracts	62	Funding for technological development	35	Mobile broadband subscribers	57
Immigration laws	18	▷ Banking and financial services	17	Wireless broadband	51
Development & application of tech.	29	Country credit rating	48	▷ Internet users	64
Scientific research legislation	53	Venture capital	20	▷ Internet bandwidth speed	66
Intellectual property rights	54	► Investment in Telecommunications	01	High-tech exports (%)	49
AI policies passed into law	37	AI private investment	35	Secure internet servers	49

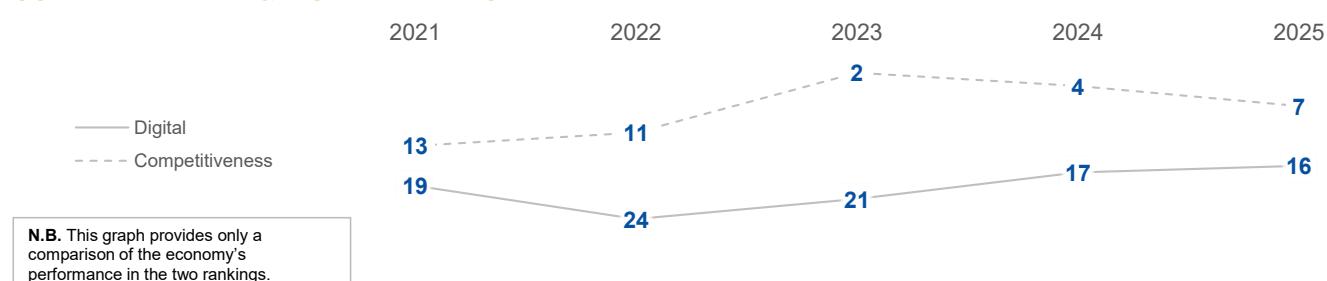
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	57	55	54	41	48
Business agility	26	22	10	10	24
IT integration	60	60	59	39	54

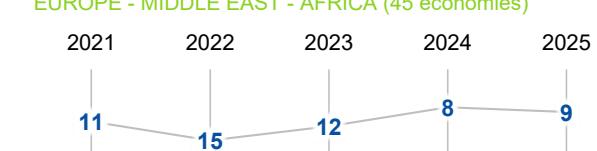
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	30	Opportunities and threats	17	E-Government	53
Internet retailing	49	World robots distribution	27	Public-private partnerships	31
Tablet possession	57	Agility of companies	27	Cyber security	47
Smartphone possession	55	Use of big data and analytics	25	▷ Software piracy	65
Attitudes toward globalization	28	Knowledge transfer	34	Government cyber security capacity	25
Flexibility and adaptability	25	► Entrepreneurial fear of failure	07	Privacy protection by law exists	53

IRELAND

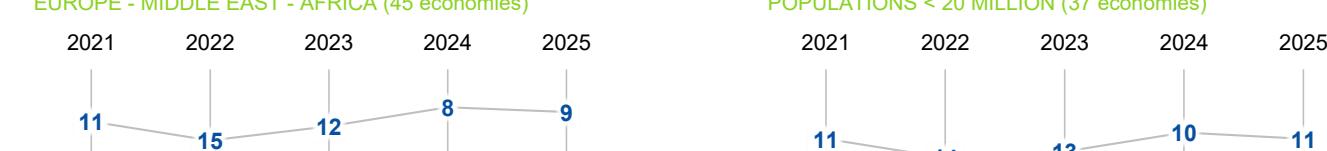
DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	19	24	21	17	16
Knowledge	23	22	19	16	19
Technology	28	37	28	20	17
Future readiness	14	22	22	11	17

COMPETITIVENESS & DIGITAL RANKINGS



PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

IRELAND

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	18	19	16	12	16
Training & education	32	31	24	25	23
Scientific concentration	26	24	24	18	21

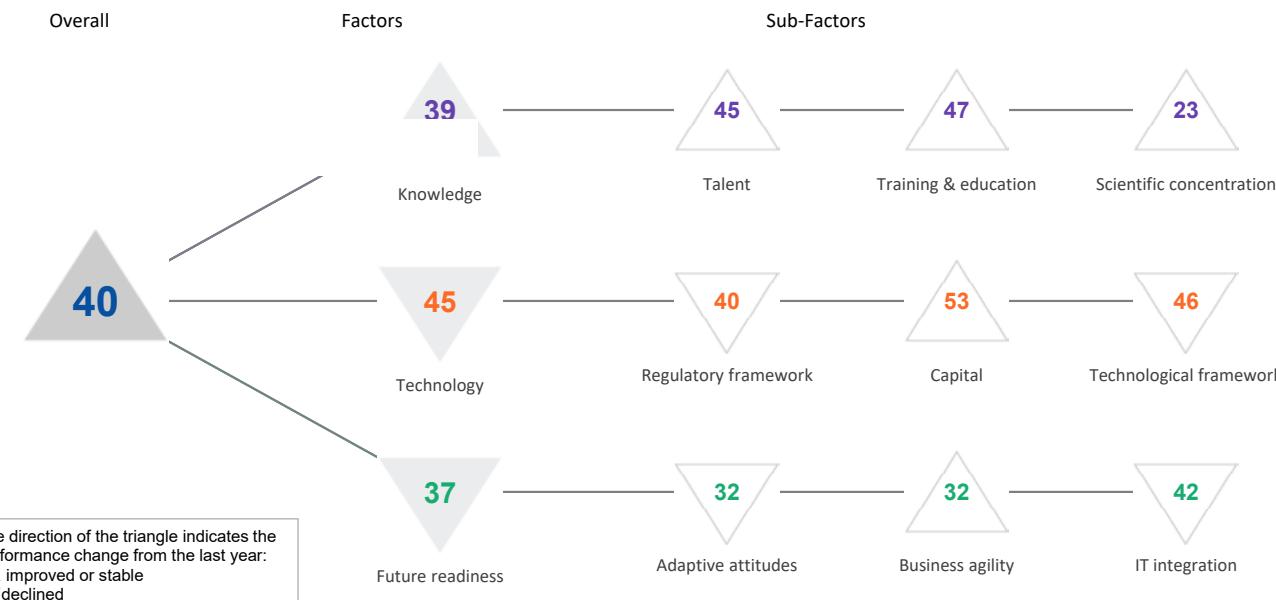
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	11	Employee training	09	Total expenditure on R&D (%)	25
International experience	12	▷ Total public expenditure on education	60	Total R&D personnel per capita	25
Management of cities	52	Higher education achievement	08	R&D productivity by publication	45
Digital/Technological skills	26	Pupil-teacher ratio (tertiary education)	47	► High-tech patent grants	06
Foreign highly skilled personnel	10	Graduates in Sciences	18	AI-related patent publications	19
Net flow of international students	27	Women with degrees	07	Robots in Education and R&D	27
Female researchers	31	Computer science education index	15	AI articles	12
Scientific and technical employment	14				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	19	22	09	16	06
Capital	35	44	42	40	41
Technological framework	34	38	35	19	13

Sub-Factors	Rank	Capital	Rank	Technological framework	Rank
Starting a business	12	▷ IT & media stock market capitalization	59	Communications technology	35
Enforcing contracts	51	Funding for technological development	16	Mobile broadband subscribers	36
Immigration laws	07	Banking and financial services	31	Wireless broadband	52
Development & application of tech.	17	Country credit rating	17	Internet users	15
► Scientific research legislation	04	Venture capital	08	Internet bandwidth speed	28
Intellectual property rights	19	▷ Investment in Telecommunications	60	High-tech exports (%)	07
AI policies passed into law	10	AI private investment	25	Secure internet servers	07

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	12	11	19	11	10
Business agility	14	18	15	11	13
IT integration	19	38	35	24	28

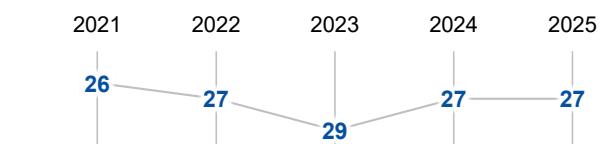
Sub-Factors	Rank	Business agility	Rank	IT integration	Rank
E-Participation	14	Opportunities and threats	07	E-Government	20
► Internet retailing	05	World robots distribution	40	Public-private partnerships	28
Tablet possession	41	Agility of companies	12	Cyber security	26
► Smartphone possession	57	Use of big data and analytics	20	Software piracy	18
Attitudes toward globalization	11	► Knowledge transfer	05	► Government cyber security capacity	59
► Flexibility and adaptability	02	Entrepreneurial fear of failure	38	Privacy protection by law exists	17

ITALY

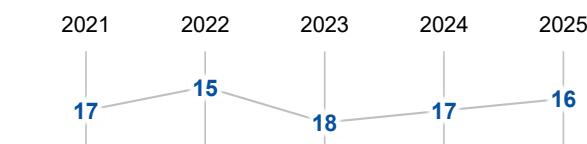
DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	40	39	43	40	40
Knowledge	40	41	43	41	39
Technology	42	44	46	41	45
Future readiness	30	38	37	35	37

COMPETITIVENESS & DIGITAL RANKINGS



PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS > 20 MILLION (32 economies)

ITALY

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	40	43	46	50	45
Training & education	60	58	58	48	47
Scientific concentration	25	23	23	23	23

Talent

Rank	Training & education	Rank	Scientific concentration
31	Employee training	56	Total expenditure on R&D (%)
57	Total public expenditure on education	48	Total R&D personnel per capita
46	Higher education achievement	50	R&D productivity by publication
56	Pupil-teacher ratio (tertiary education)	50	High-tech patent grants
57	Foreign highly skilled personnel	29	AI-related patent publications
40	Graduates in Sciences	13	Robots in Education and R&D
33	Women with degrees	26	AI articles
11	Female researchers	10	Computer science education index
	Scientific and technical employment		

TECHNOLOGY

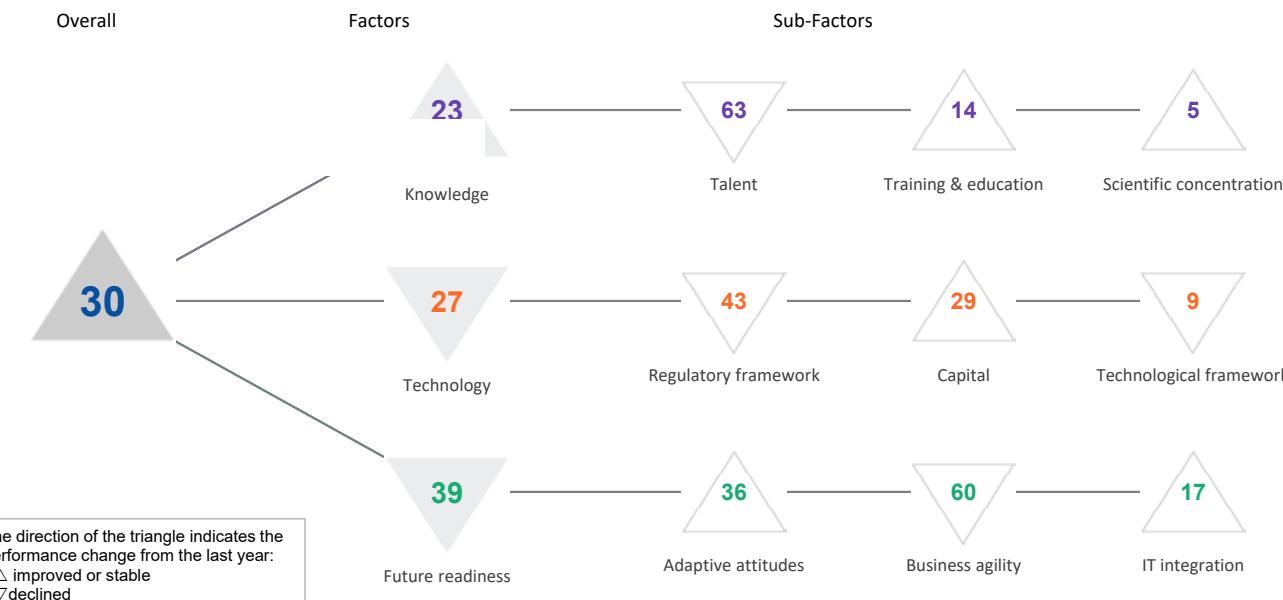
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	42	38	41	35	40
Capital	48	41	48	53	53
Technological framework	44	44	45	44	46

Regulatory framework

Rank	Capital	Technological framework
42	IT & media stock market capitalization	45
60	Funding for technological development	29
42	Banking and financial services	18
50	Country credit rating	44
52	Venture capital	44
32	Investment in Telecommunications	45
04	AI private investment	30

FUTURE READINESS

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	36	32	31	27	32
Business agility	19	30	33	39	32
IT integration	38	40	41	38	42

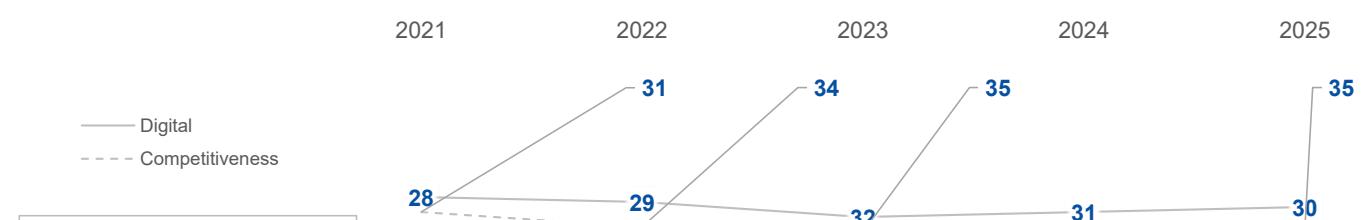

Adaptive attitudes

Rank	Business agility	IT integration
49	Opportunities and threats	43
30	World robots distribution	57
36	Agility of companies	49
19	Use of big data and analytics	33
51	Knowledge transfer	42
17	Entrepreneurial fear of failure	03
	Privacy protection by law exists	

JAPAN

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)



The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	28	29	32	31	30
Knowledge	25	28	28	31	23
Technology	30	30	32	26	27
Future readiness	27	28	32	38	39

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

ASIA - PACIFIC (14 economies)

POPULATIONS > 20 MILLION (32 economies)

JAPAN

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	47	50	49	53	63
Training & education	21	21	21	20	14
Scientific concentration	13	14	15	24	05

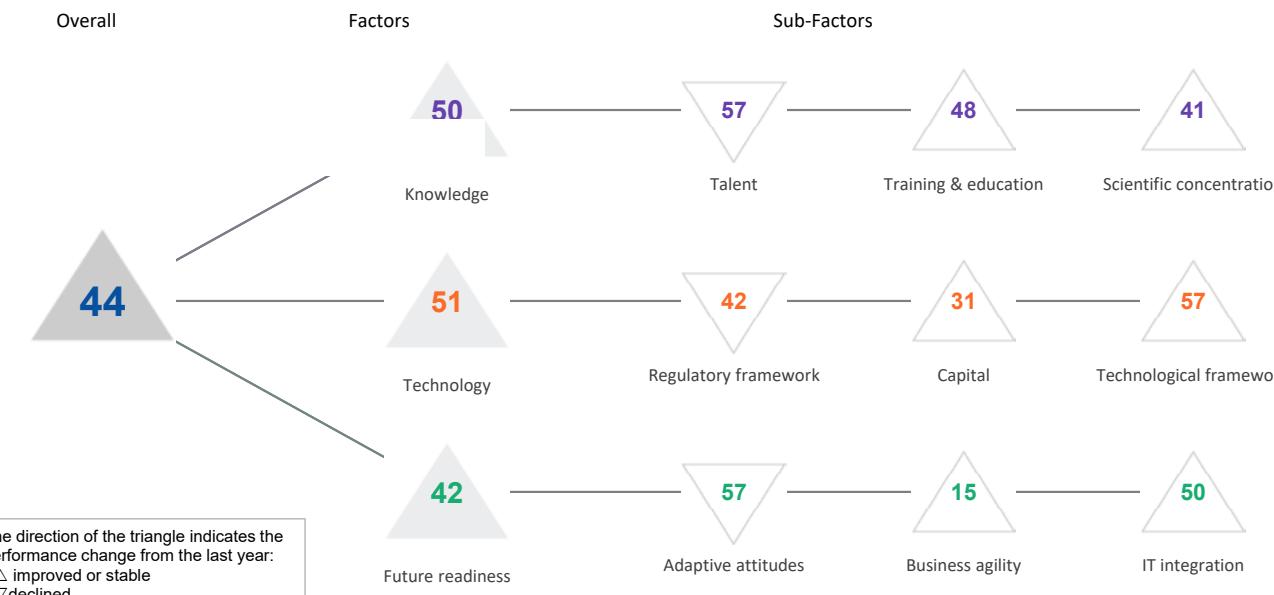
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	05	Employee training	38	Total expenditure on R&D (%)	06
▷ International experience	69	Total public expenditure on education	56	Total R&D personnel per capita	23
Management of cities	14	Higher education achievement	07	R&D productivity by publication	19
▷ Digital/Technological skills	65	▷ Pupil-teacher ratio (tertiary education)	03	High-tech patent grants	08
Foreign highly skilled personnel	59	Graduates in Sciences	-	AI-related patent publications	04
Net flow of international students	31	Women with degrees	06	Robots in Education and R&D	06
Female researchers	59	Computer science education index	13	AI articles	48
Scientific and technical employment	39				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	48	47	50	39	43
Capital	37	32	36	38	29
Technological framework	08	08	07	06	09

Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	45	IT & media stock market capitalization	12	Communications technology	28
Enforcing contracts	35	Funding for technological development	37	Mobile broadband subscribers	05
Immigration laws	59	Banking and financial services	38	▷ Wireless broadband	02
Development & application of tech.	43	Country credit rating	29	Internet users	45
Scientific research legislation	45	Venture capital	37	Internet bandwidth speed	16
Intellectual property rights	40	Investment in Telecommunications	40	High-tech exports (%)	30
AI policies passed into law	29	AI private investment	13	Secure internet servers	29

FUTURE READINESS

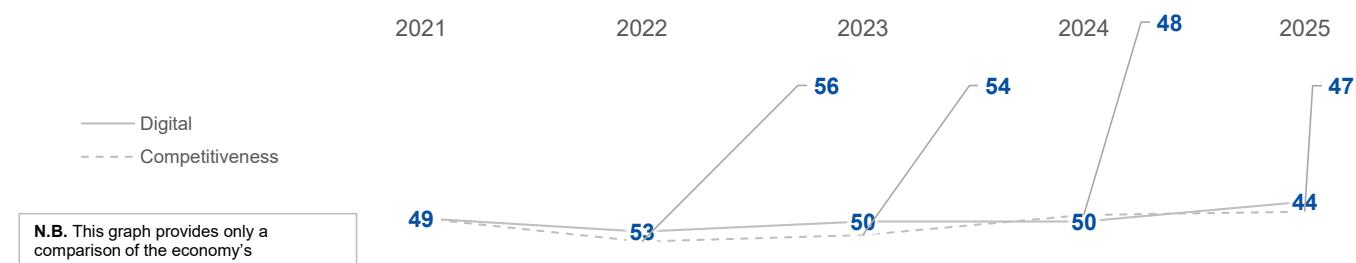

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	18	20	22	37	36
Business agility	53	62	56	58	60
IT integration	23	18	16	17	17

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
▷ E-Participation	01	▷ Opportunities and threats	69	E-Government	13
Internet retailing	19	▷ World robots distribution	02	Public-private partnerships	39
Tablet possession	43	▷ Agility of companies	69	Cyber security	45
Smartphone possession	47	▷ Use of big data and analytics	67	▷ Software piracy	02
Attitudes toward globalization	54	Knowledge transfer	49	Government cyber security capacity	34
Flexibility and adaptability	59	Entrepreneurial fear of failure	40	Privacy protection by law exists	13

JORDAN

DIGITAL TRENDS - OVERALL

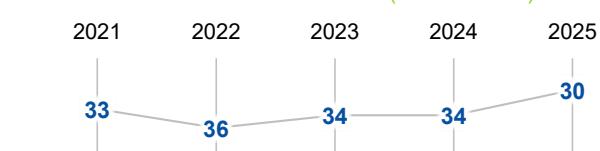
OVERALL PERFORMANCE (69 economies)

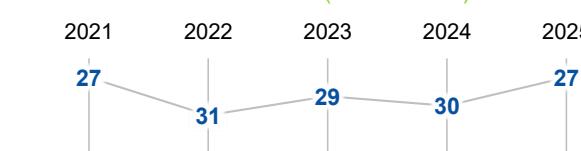


The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	49	53	50	50	44
Knowledge	48	53	59	57	50
Technology	43	50	48	52	51
Future readiness	56	55	45	43	42


COMPETITIVENESS & DIGITAL RANKINGS


N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

JORDAN

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

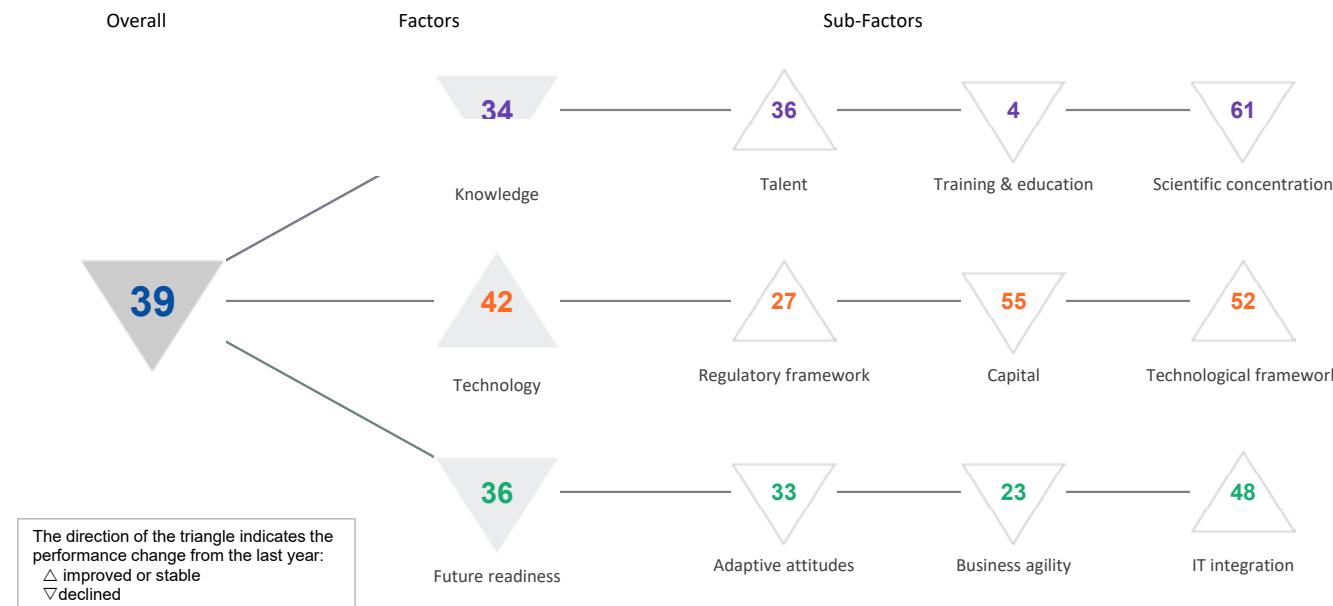
Sub-Factors	2021	2022	2023	2024	2025
Talent	34	41	38	43	57
Training & education	33	41	50	49	48
Scientific concentration	62	62	63	65	41

Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	57	Employee training	31	Total expenditure on R&D (%)	-
International experience	20	Total public expenditure on education	52	Total R&D personnel per capita	-
Management of cities	33	Higher education achievement	-	R&D productivity by publication	-
Digital/Technological skills	35	Pupil-teacher ratio (tertiary education)	60	High-tech patent grants	51
Foreign highly skilled personnel	20	Graduates in Sciences	35	AI-related patent publications	-
Net flow of international students	37	Women with degrees	47	Robots in Education and R&D	-
Female researchers	58	Computer science education index	34	AI articles	27
Scientific and technical employment	42				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	38	45	42	41	42
Capital	41	45	44	42	31
Technological framework	53	53	54	62	57
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	52	IT & media stock market capitalization	51	Communications technology	54
Enforcing contracts	56	Funding for technological development	21	Mobile broadband subscribers	65
Immigration laws	23	Banking and financial services	26	Wireless broadband	66
Development & application of tech.	39	Country credit rating	60	Internet users	31
► Scientific research legislation	15	► Venture capital	11	Internet bandwidth speed	47
Intellectual property rights	29	► Investment in Telecommunications	10	► High-tech exports (%)	63
AI policies passed into law	60	AI private investment	-	► Secure internet servers	67

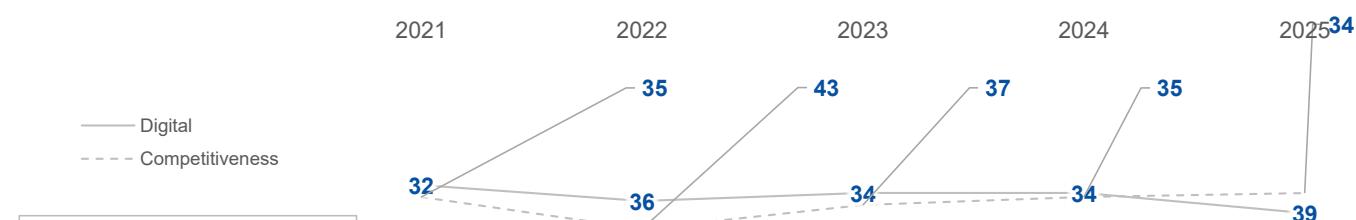
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	61	61	53	56	57
Business agility	28	34	29	22	15
IT integration	54	52	46	54	50

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	55	Opportunities and threats	20	E-Government	59
Internet retailing	56	World robots distribution	-	Public-private partnerships	19
▷ Tablet possession	62	► Agility of companies	18	Cyber security	24
Smartphone possession	19	Use of big data and analytics	21	Software piracy	47
Attitudes toward globalization	36	Knowledge transfer	21	► Government cyber security capacity	11
Flexibility and adaptability	32	Entrepreneurial fear of failure	25	Privacy protection by law exists	62

KAZAKHSTAN

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	32	36	34	34	39
Knowledge	36	30	30	33	34
Technology	40	40	41	46	42
Future readiness	28	30	31	27	36

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS > 20 MILLION (32 economies)

KAZAKHSTAN

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

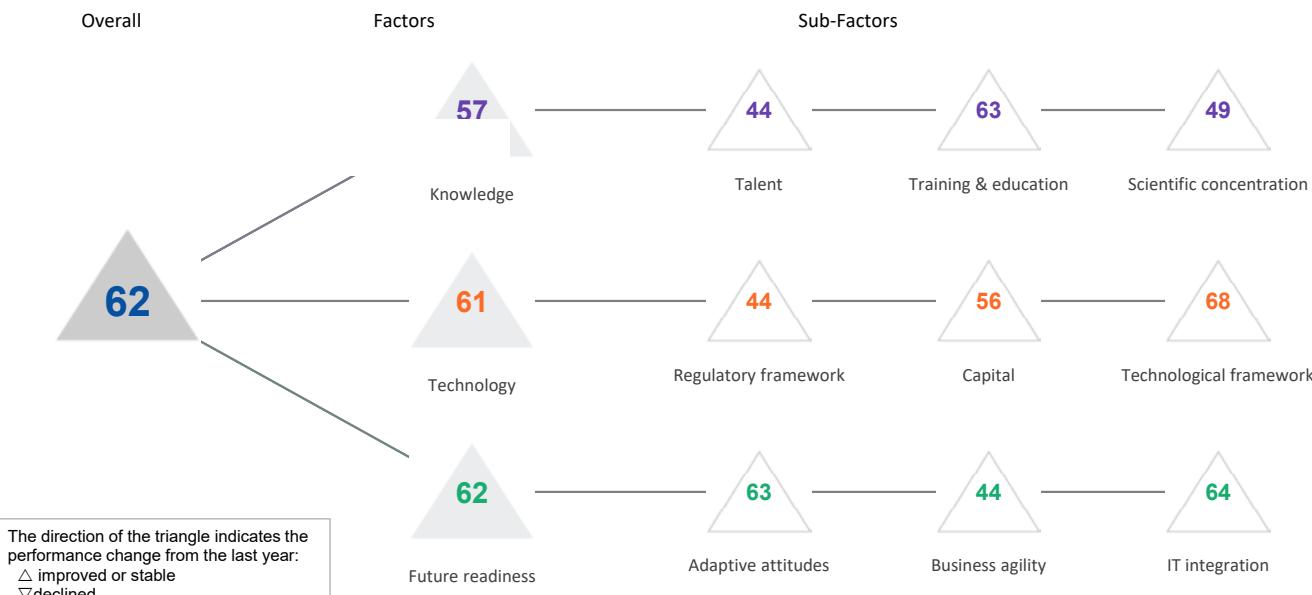
Sub-Factors	2021	2022	2023	2024	2025
Talent	45	46	47	44	36
Training & education	14	01	01	02	04
Scientific concentration	54	51	49	49	61

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	41	Employee training	11	Total expenditure on R&D (%)	60
International experience	36	Total public expenditure on education	34	Total R&D personnel per capita	50
Management of cities	29	► Higher education achievement	01	R&D productivity by publication	20
Digital/Technological skills	44	Pupil-teacher ratio (tertiary education)	37	▷ High-tech patent grants	62
Foreign highly skilled personnel	33	Graduates in Sciences	20	AI-related patent publications	45
Net flow of international students	59	► Women with degrees	01	Robots in Education and R&D	-
► Female researchers	03	Computer science education index	58	AI articles	54
Scientific and technical employment	47				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	22	21	22	28	27
Capital	51	50	53	52	55
Technological framework	47	47	48	52	52
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	11	IT & media stock market capitalization	-	Communications technology	40
► Enforcing contracts	04	Funding for technological development	23	▷ Mobile broadband subscribers	61
Immigration laws	17	Banking and financial services	37	Wireless broadband	60
Development & application of tech.	23	Country credit rating	46	Internet users	30
Scientific research legislation	27	Venture capital	35	Internet bandwidth speed	60
Intellectual property rights	38	▷ Investment in Telecommunications	68	► High-tech exports (%)	09
► AI policies passed into law	66	AI private investment	57	Secure internet servers	44

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	32	34	29	30	33
Business agility	06	06	05	05	23
IT integration	44	56	54	56	48

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	23	Opportunities and threats	18	E-Government	23
Internet retailing	43	World robots distribution	-	Public-private partnerships	17
Tablet possession	53	Agility of companies	14	Cyber security	43
Smartphone possession	13	Use of big data and analytics	12	▷ Software piracy	61
Attitudes toward globalization	19	Knowledge transfer	25	Government cyber security capacity	35
Flexibility and adaptability	21	Entrepreneurial fear of failure	43	Privacy protection by law exists	59

KENYA

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	-	-	-	-	62
Knowledge	-	-	-	-	57
Technology	-	-	-	-	61
Future readiness	-	-	-	-	62

COMPETITIVENESS & DIGITAL RANKINGS

	2021	2022	2023	2024	2025
Digital	-	-	-	-	56
Competitiveness	-	-	-	-	62

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

2021	2022	2023	2024	2025
				41

POPULATIONS > 20 MILLION (32 economies)

2021	2022	2023	2024	2025
				27

KENYA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

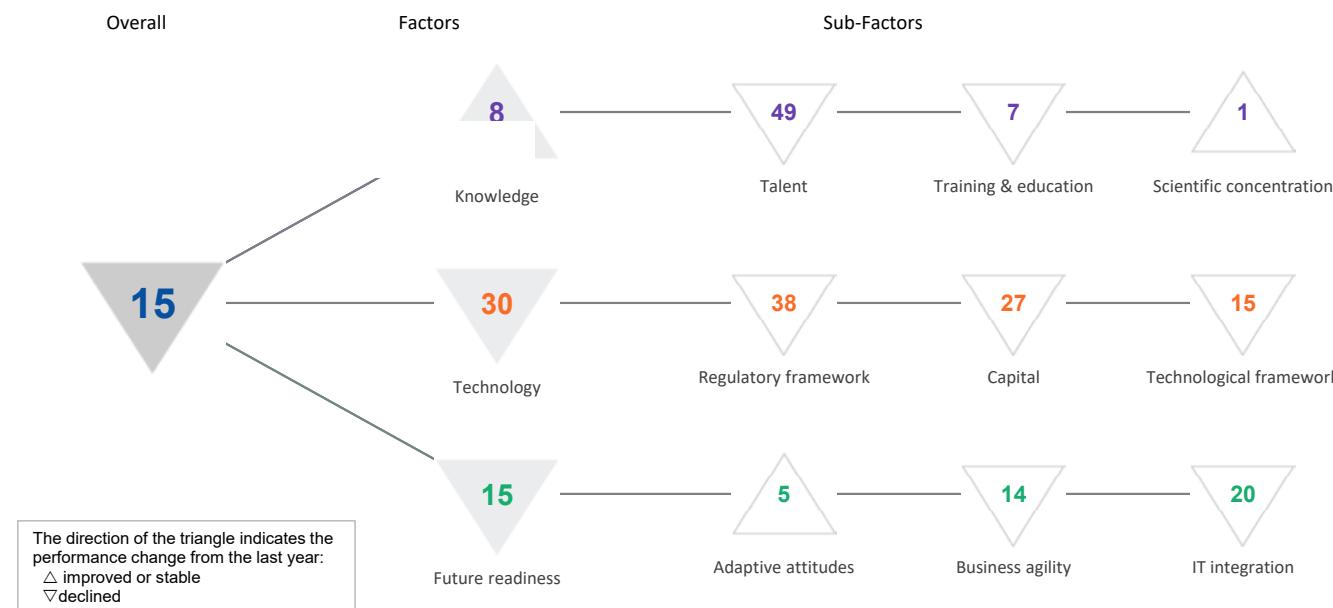
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	-	-	-	-	44
Training & education	-	-	-	-	63
Scientific concentration	-	-	-	-	49
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	43	Total expenditure on R&D (%)	62
International experience	30	Total public expenditure on education	50	Total R&D personnel per capita	-
Management of cities	55	Higher education achievement	41	► R&D productivity by publication	04
► Digital/Technological skills	18	Pupil-teacher ratio (tertiary education)	57	High-tech patent grants	57
Foreign highly skilled personnel	35	Graduates in Sciences	51	AI-related patent publications	-
Net flow of international students	48	Women with degrees	62	Robots in Education and R&D	-
Female researchers	26	Computer science education index	60	▷ AI articles	67
Scientific and technical employment	56				

TECHNOLOGY

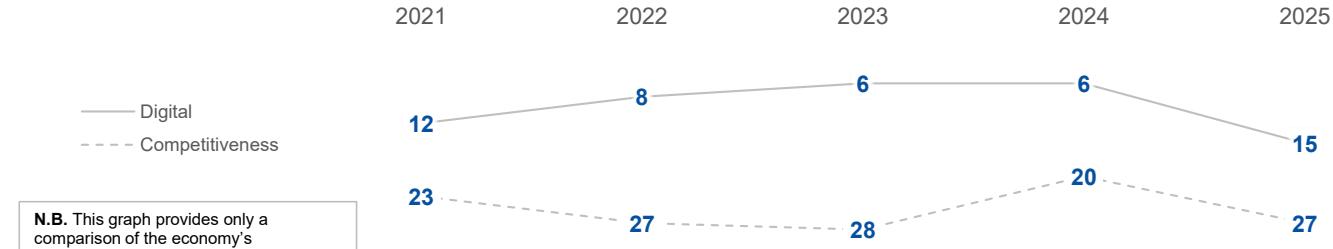
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	-	-	-	-	44
Capital	-	-	-	-	56
Technological framework	-	-	-	-	68
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	57	IT & media stock market capitalization	-	Communications technology	44
Enforcing contracts	50	Funding for technological development	51	Mobile broadband subscribers	63
► Immigration laws	19	Banking and financial services	42	▷ Wireless broadband	65
Development & application of tech.	33	▷ Country credit rating	65	Internet users	68
Scientific research legislation	28	Venture capital	55	▷ Internet bandwidth speed	68
Intellectual property rights	42	► Investment in Telecommunications	15	High-tech exports (%)	60
AI policies passed into law	40	AI private investment	52	Secure internet servers	64

FUTURE READINESS

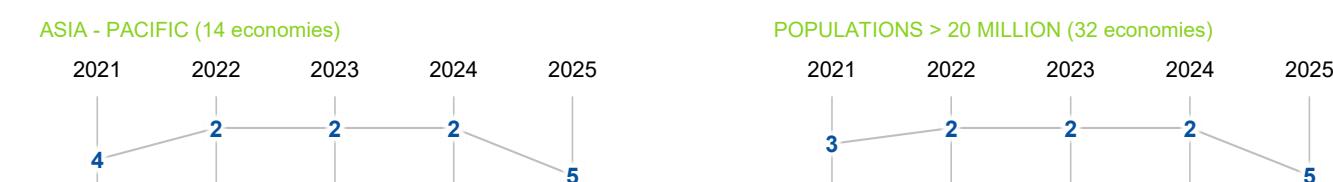

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	-	-	-	-	63
Business agility	-	-	-	-	44
IT integration	-	-	-	-	64

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	59	Opportunities and threats	26	E-Government	62
Internet retailing	60	World robots distribution	-	Public-private partnerships	30
Tablet possession	59	Agility of companies	49	Cyber security	53
Smartphone possession	60	Use of big data and analytics	51	Software piracy	61
Attitudes toward globalization	21	Knowledge transfer	39	Government cyber security capacity	56
► Flexibility and adaptability	11	Entrepreneurial fear of failure	-	Privacy protection by law exists	48

KOREA REP.


DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)



OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	12	08	06	06	15
Knowledge	15	16	10	08	08
Technology	13	13	12	14	30
Future readiness	05	02	01	03	15

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

KOREA REP.

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	26	33	31	19	49
Training & education	16	16	06	05	07
Scientific concentration	03	03	02	04	01

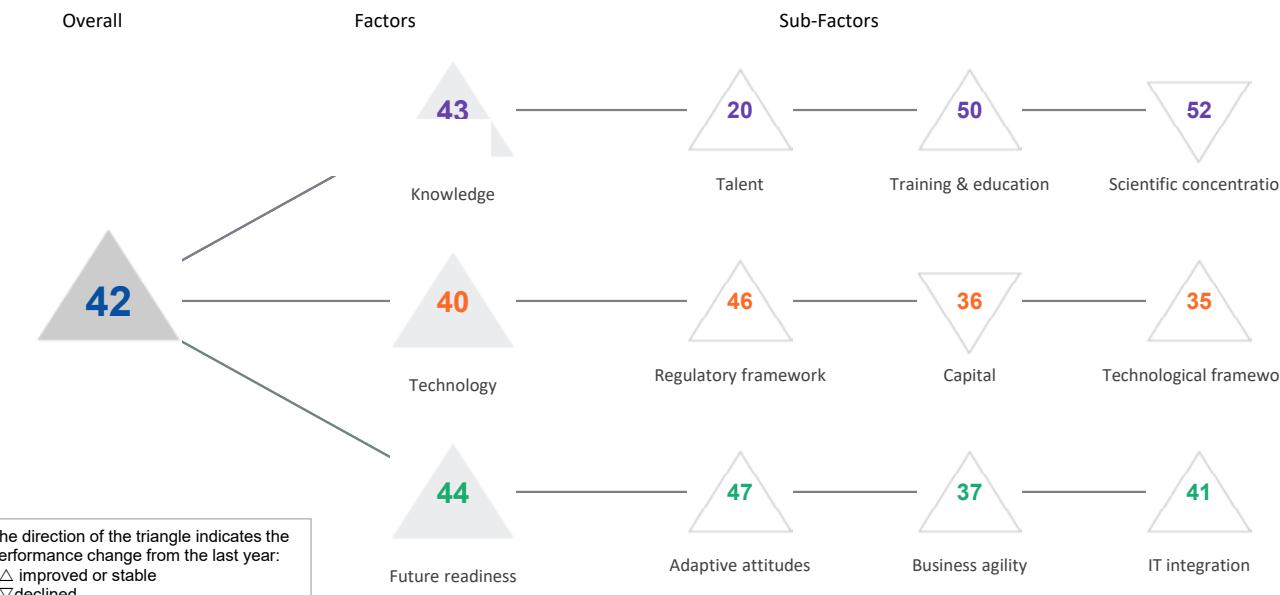
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	06	Employee training	40	► Total expenditure on R&D (%)	01
▷ International experience	58	Total public expenditure on education	36	Total R&D personnel per capita	04
Management of cities	28	Higher education achievement	05	R&D productivity by publication	06
▷ Digital/Technological skills	59	Pupil-teacher ratio (tertiary education)	25	High-tech patent grants	04
▷ Foreign highly skilled personnel	61	Graduates in Sciences	09	AI-related patent publications	03
Net flow of international students	34	Women with degrees	16	Robots in Education and R&D	04
Female researchers	57	Computer science education index	07	AI articles	28
Scientific and technical employment	29				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	23	23	26	18	38
Capital	16	15	24	17	27
Technological framework	07	07	08	09	15

Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	18	IT & media stock market capitalization	03	Communications technology	24
▷ Enforcing contracts	02	Funding for technological development	49	Mobile broadband subscribers	11
▷ Immigration laws	63	Banking and financial services	55	Wireless broadband	31
Development & application of tech.	55	Country credit rating	17	Internet users	11
Scientific research legislation	44	Venture capital	46	Internet bandwidth speed	12
Intellectual property rights	52	Investment in Telecommunications	30	High-tech exports (%)	11
AI policies passed into law	32	AI private investment	10	Secure internet servers	42

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	02	01	01	06	05
Business agility	05	02	03	02	14
IT integration	16	14	12	06	20

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	03	Opportunities and threats	52	E-Government	04
▷ Internet retailing	02	World robots distribution	03	▷ Public-private partnerships	59
Tablet possession	47	Agility of companies	46	Cyber security	40
Smartphone possession	08	Use of big data and analytics	37	Software piracy	19
Attitudes toward globalization	35	Knowledge transfer	40	Government cyber security capacity	05
Flexibility and adaptability	33	▷ Entrepreneurial fear of failure	02	Privacy protection by law exists	10

KUWAIT

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	-	-	41	45	42
Knowledge	-	-	44	48	43
Technology	-	-	37	44	40
Future readiness	-	-	41	45	44

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

KUWAIT

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

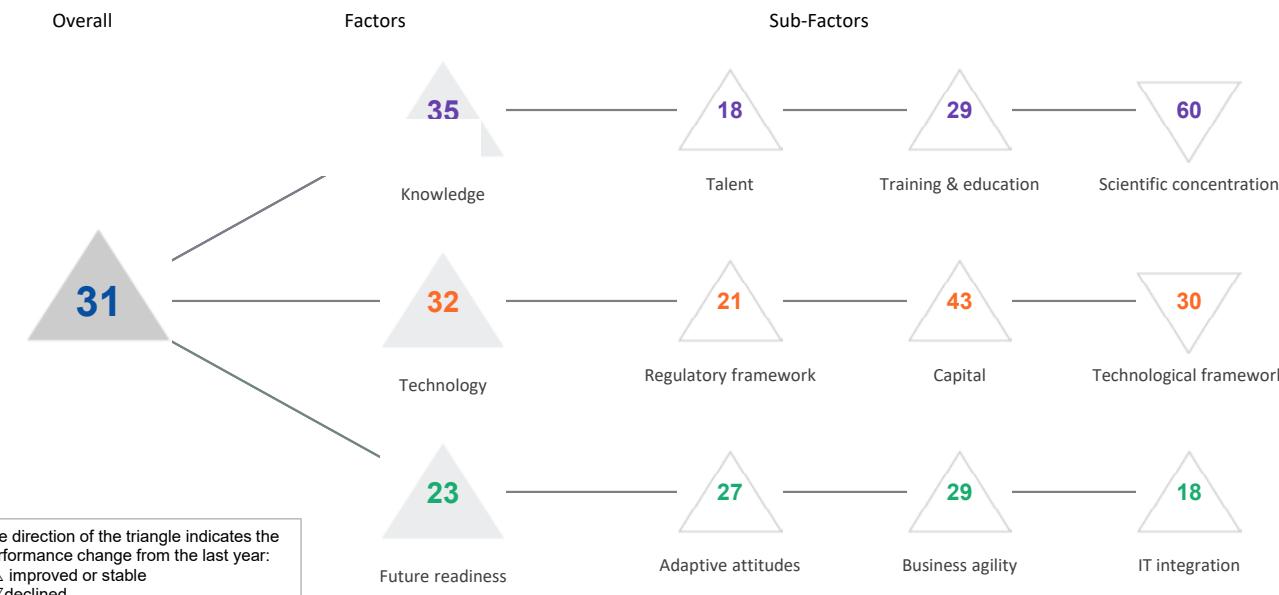
Sub-Factors	2021	2022	2023	2024	2025
Talent	-	-	43	36	20
Training & education	-	-	53	61	50
Scientific concentration	-	-	35	39	52

Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	28	Total expenditure on R&D (%)	61
International experience	33	► Total public expenditure on education	06	Total R&D personnel per capita	15
Management of cities	40	▷ Higher education achievement	63	R&D productivity by publication	22
Digital/Technological skills	24	Pupil-teacher ratio (tertiary education)	-	High-tech patent grants	-
Foreign highly skilled personnel	34	Graduates in Sciences	-	AI-related patent publications	52
Net flow of international students	-	Women with degrees	56	Robots in Education and R&D	53
► Female researchers	08	Computer science education index	49	AI articles	38
Scientific and technical employment	-				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	-	-	44	52	46
Capital	-	-	40	35	36
Technological framework	-	-	25	46	35
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	37	IT & media stock market capitalization	27	Communications technology	34
Enforcing contracts	45	Funding for technological development	20	► Mobile broadband subscribers	10
Immigration laws	43	Banking and financial services	16	Wireless broadband	35
Development & application of tech.	24	Country credit rating	25	► Internet users	05
Scientific research legislation	39	Venture capital	24	Internet bandwidth speed	30
Intellectual property rights	43	► Investment in Telecommunications	69	► High-tech exports (%)	64
AI policies passed into law	60	AI private investment	-	Secure internet servers	62

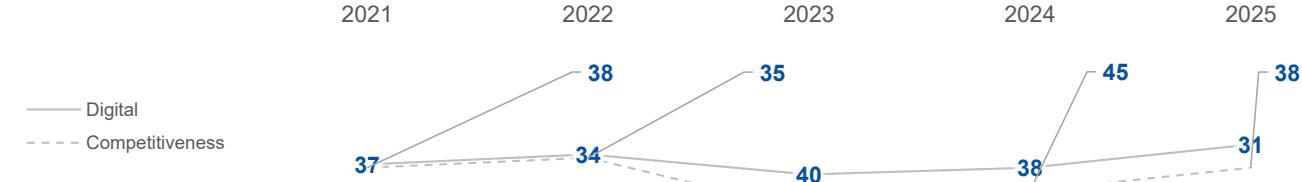
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	-	-	36	48	47
Business agility	-	-	47	41	37
IT integration	-	-	40	51	41

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
► E-Participation	63	Opportunities and threats	43	E-Government	55
Internet retailing	41	World robots distribution	57	Public-private partnerships	24
Tablet possession	14	Agility of companies	39	Cyber security	12
Smartphone possession	27	Use of big data and analytics	19	Software piracy	51
Attitudes toward globalization	34	Knowledge transfer	28	► Government cyber security capacity	09
Flexibility and adaptability	35	Entrepreneurial fear of failure	31	► Privacy protection by law exists	66

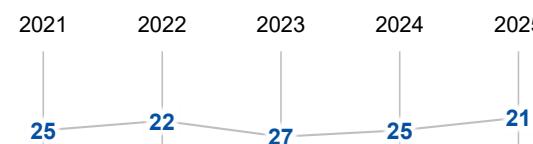
LATVIA

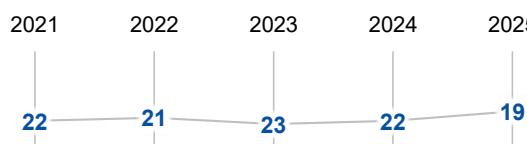
DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	37	34	40	38	31
Knowledge	34	36	39	38	35
Technology	34	34	43	42	32
Future readiness	42	32	34	34	23


COMPETITIVENESS & DIGITAL RANKINGS


N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

LATVIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	24	25	44	32	18
Training & education	30	28	31	33	29
Scientific concentration	51	52	54	51	60

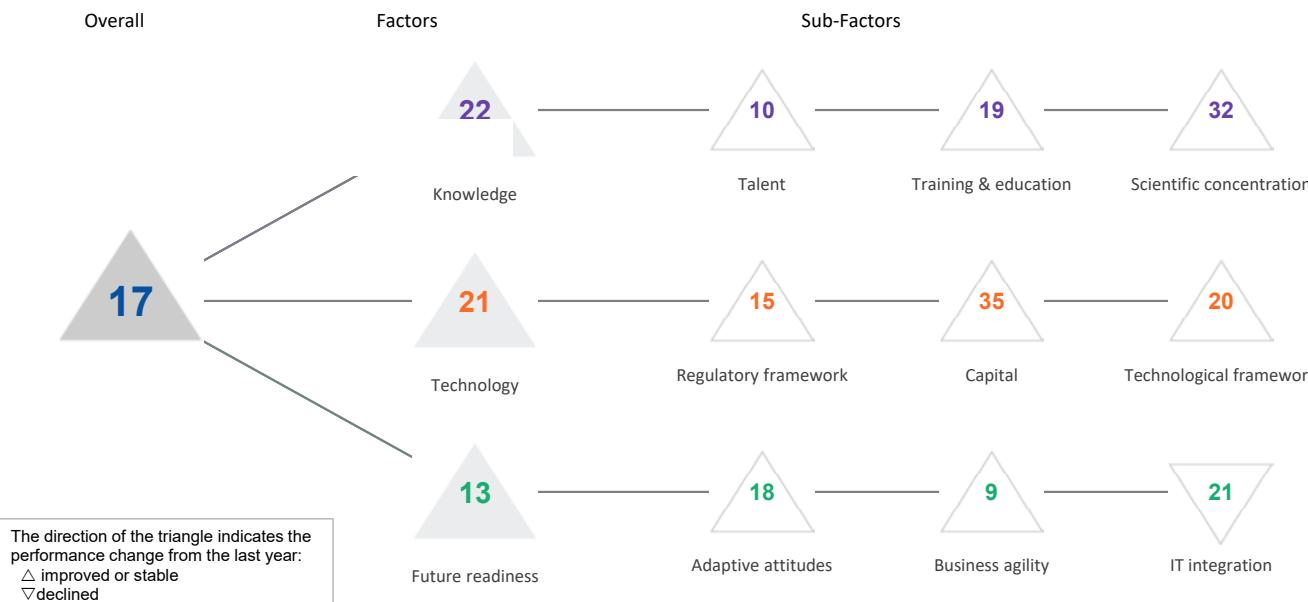
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	21	Employee training	25	Total expenditure on R&D (%)	42
International experience	26	► Total public expenditure on education	09	Total R&D personnel per capita	40
Management of cities	21	Higher education achievement	30	▷ R&D productivity by publication	56
Digital/Technological skills	16	Pupil-teacher ratio (tertiary education)	14	High-tech patent grants	43
Foreign highly skilled personnel	44	Graduates in Sciences	50	AI-related patent publications	45
Net flow of international students	20	Women with degrees	25	▷ Robots in Education and R&D	50
► Female researchers	06	Computer science education index	43	AI articles	41
Scientific and technical employment	36				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	34	36	43	43	21
Capital	46	39	52	56	43
Technological framework	18	22	27	27	30

Sub-Factors	Rank	Capital	Rank	Technological framework	Rank
Starting a business	15	IT & media stock market capitalization	40	► Communications technology	10
Enforcing contracts	14	Funding for technological development	22	Mobile broadband subscribers	30
▷ Immigration laws	58	▷ Banking and financial services	52	Wireless broadband	23
Development & application of tech.	15	Country credit rating	36	Internet users	33
Scientific research legislation	26	Venture capital	30	Internet bandwidth speed	38
Intellectual property rights	28	Investment in Telecommunications	48	High-tech exports (%)	24
AI policies passed into law	20	AI private investment	-	Secure internet servers	35

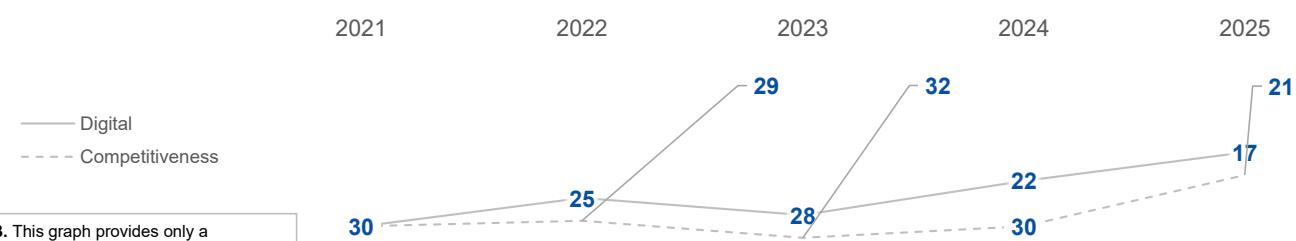
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	51	44	35	31	27
Business agility	48	31	49	45	29
IT integration	37	23	21	25	18

Sub-Factors	Rank	Business agility	Rank	IT integration	Rank
E-Participation	32	Opportunities and threats	30	E-Government	26
Internet retailing	33	▷ World robots distribution	51	Public-private partnerships	38
Tablet possession	21	Agility of companies	22	Cyber security	15
Smartphone possession	27	► Use of big data and analytics	13	Software piracy	40
Attitudes toward globalization	25	Knowledge transfer	29	► Government cyber security capacity	08
Flexibility and adaptability	19	Entrepreneurial fear of failure	32	Privacy protection by law exists	21

LITHUANIA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	30	25	28	22	17
Knowledge	26	24	23	23	22
Technology	29	32	33	28	21
Future readiness	33	24	28	17	13

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

LITHUANIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	25	27	25	21	10
Training & education	15	13	15	24	19
Scientific concentration	37	37	33	33	32

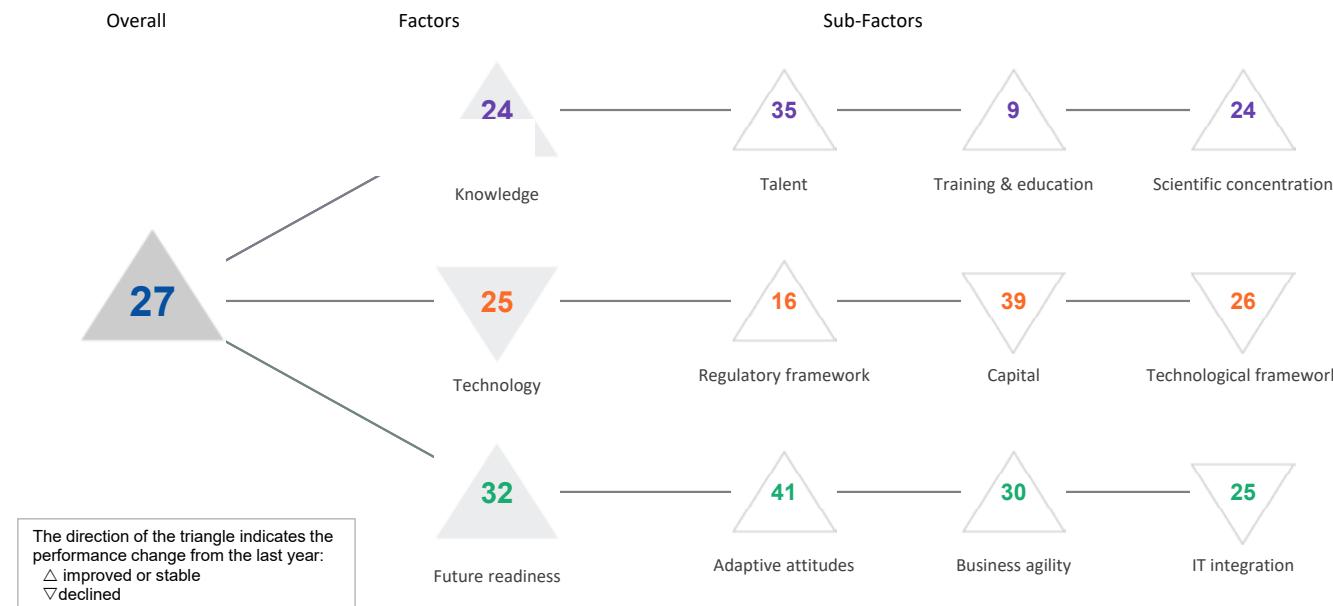
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	25	Employee training	12	Total expenditure on R&D (%)	37
International experience	22	Total public expenditure on education	20	Total R&D personnel per capita	35
Management of cities	19	Higher education achievement	13	▷ R&D productivity by publication	55
► Digital/Technological skills	02	Pupil-teacher ratio (tertiary education)	09	► High-tech patent grants	03
Foreign highly skilled personnel	29	Graduates in Sciences	31	AI-related patent publications	33
Net flow of international students	30	Women with degrees	13	Robots in Education and R&D	45
Female researchers	11	▷ Computer science education index	48	AI articles	35
Scientific and technical employment	26				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	32	28	28	25	15
Capital	30	37	39	36	35
Technological framework	30	32	33	32	20

Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	19	IT & media stock market capitalization	06	► Communications technology	01
Enforcing contracts	07	Funding for technological development	36	▷ Mobile broadband subscribers	56
▷ Immigration laws	54	Banking and financial services	36	Wireless broadband	07
Development & application of tech.	18	Country credit rating	32	Internet users	41
Scientific research legislation	28	Venture capital	33	Internet bandwidth speed	25
Intellectual property rights	18	▷ Investment in Telecommunications	59	High-tech exports (%)	36
AI policies passed into law	20	AI private investment	22	Secure internet servers	11

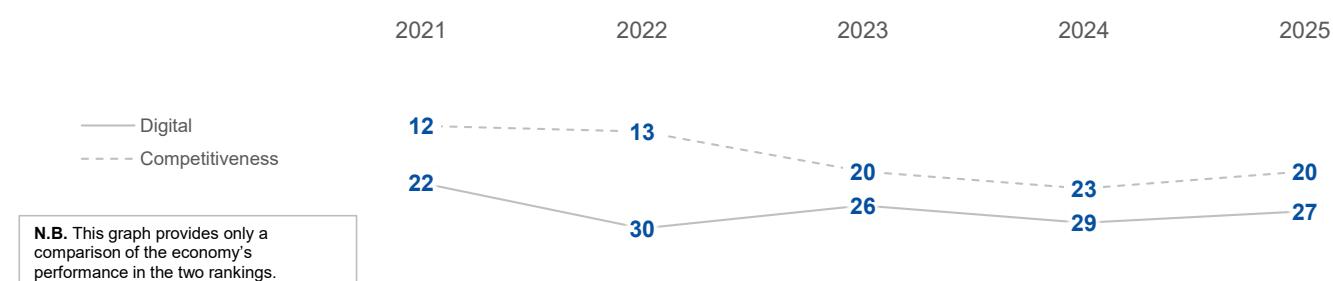
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	47	38	37	21	18
Business agility	24	17	18	13	09
IT integration	34	26	28	19	21

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	24	► Opportunities and threats	01	E-Government	21
Internet retailing	22	World robots distribution	43	Public-private partnerships	46
Tablet possession	31	► Agility of companies	01	Cyber security	17
Smartphone possession	14	Use of big data and analytics	06	Software piracy	43
Attitudes toward globalization	27	Knowledge transfer	37	Government cyber security capacity	06
Flexibility and adaptability	06	Entrepreneurial fear of failure	34	Privacy protection by law exists	23

LUXEMBOURG

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	22	30	26	29	27
Knowledge	29	35	33	24	24
Technology	14	19	25	22	25
Future readiness	24	35	21	40	32

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

LUXEMBOURG

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

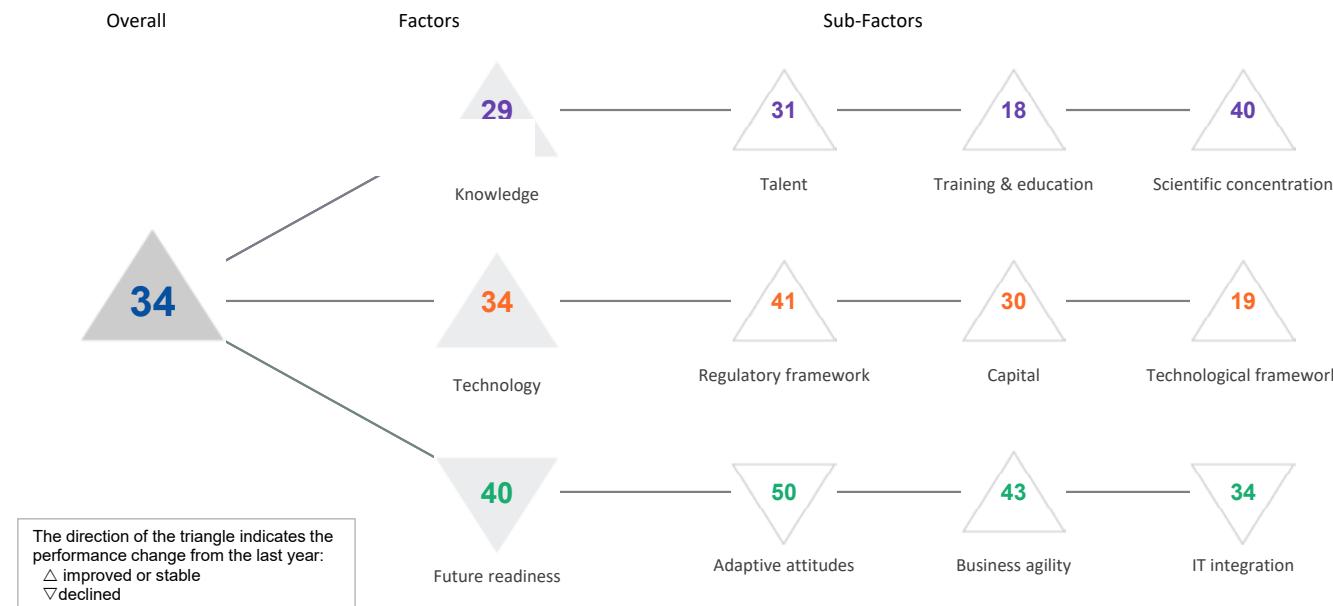
Sub-Factors	2021	2022	2023	2024	2025
Talent	33	35	40	37	35
Training & education	20	20	18	13	09
Scientific concentration	38	42	48	28	24

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	21	Employee training	30	Total expenditure on R&D (%)	39
International experience	07	Total public expenditure on education	23	Total R&D personnel per capita	16
Management of cities	12	Higher education achievement	12	▷ R&D productivity by publication	59
Digital/Technological skills	36	► Pupil-teacher ratio (tertiary education)	01	High-tech patent grants	28
► Foreign highly skilled personnel	04	Graduates in Sciences	28	AI-related patent publications	28
▷ Net flow of international students	63	Women with degrees	17	Robots in Education and R&D	-
Female researchers	50	Computer science education index	19	▷ AI articles	02
Scientific and technical employment	22				

TECHNOLOGY

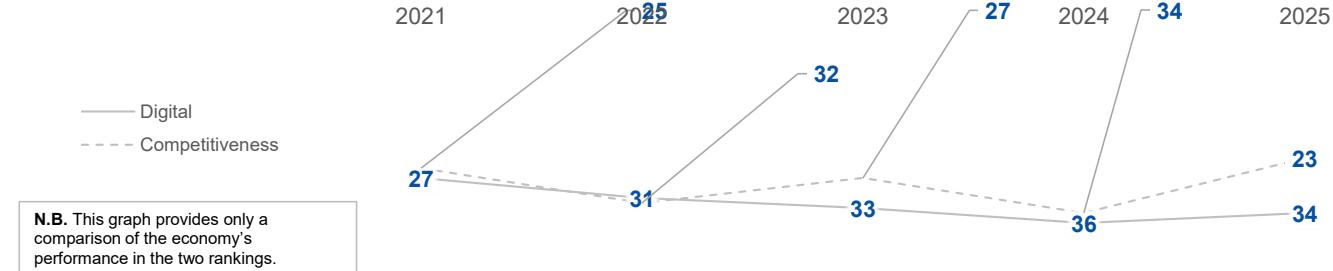
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	08	18	17	21	16
Capital	08	24	29	34	39
Technological framework	25	27	34	17	26
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	34	IT & media stock market capitalization	10	Communications technology	23
Enforcing contracts	17	Funding for technological development	32	Mobile broadband subscribers	19
Immigration laws	09	▷ Banking and financial services	64	Wireless broadband	29
Development & application of tech.	37	► Country credit rating	01	Internet users	07
Scientific research legislation	18	Venture capital	39	Internet bandwidth speed	27
Intellectual property rights	20	▷ Investment in Telecommunications	63	▷ High-tech exports (%)	53
AI policies passed into law	15	AI private investment	29	Secure internet servers	15

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	38	47	23	60	41
Business agility	22	36	27	42	30
IT integration	12	17	10	23	25

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	53	Opportunities and threats	23	E-Government	38
Internet retailing	-	World robots distribution	-	Public-private partnerships	37
Tablet possession	-	Agility of companies	28	Cyber security	35
Smartphone possession	-	Use of big data and analytics	42	► Software piracy	04
Attitudes toward globalization	39	Knowledge transfer	31	Government cyber security capacity	41
Flexibility and adaptability	38	Entrepreneurial fear of failure	12	Privacy protection by law exists	30

MALAYSIA


DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	27	31	33	36	34
Knowledge	22	25	29	34	29
Technology	26	29	27	35	34
Future readiness	29	31	33	36	40

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

MALAYSIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

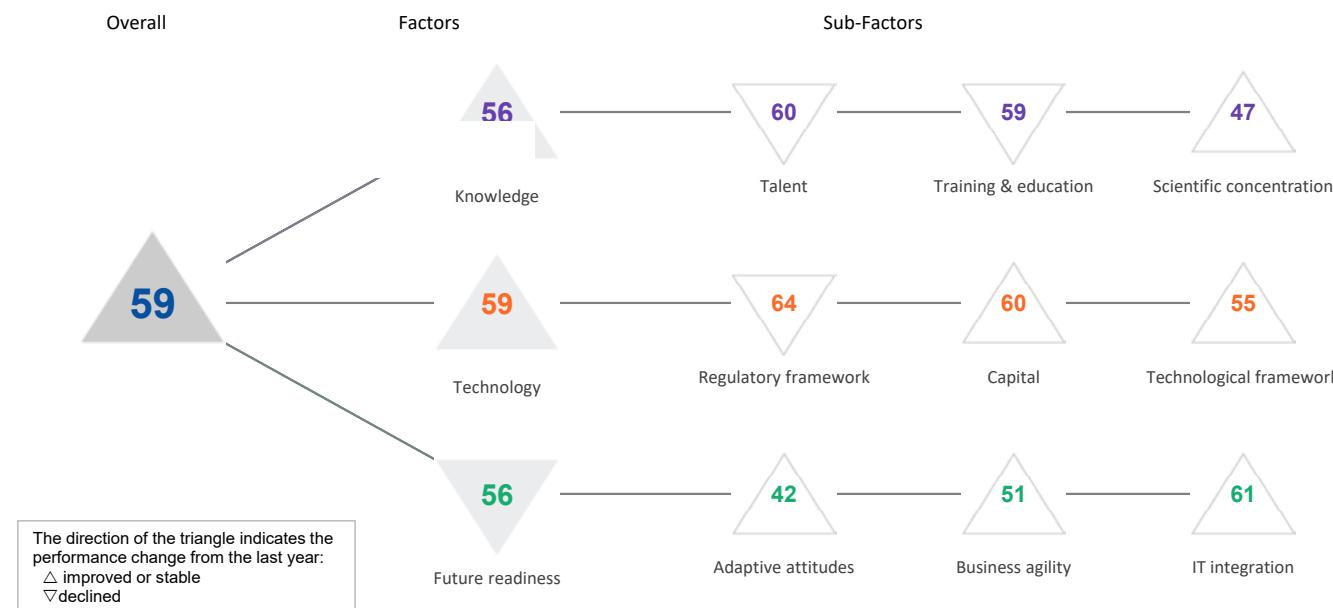
Sub-Factors	2021	2022	2023	2024	2025
Talent	30	36	30	41	31
Training & education	09	10	17	22	18
Scientific concentration	32	35	36	40	40

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	47	Employee training	32	Total expenditure on R&D (%)	40
International experience	17	Total public expenditure on education	43	Total R&D personnel per capita	47
Management of cities	30	Higher education achievement	39	R&D productivity by publication	23
Digital/Technological skills	40	Pupil-teacher ratio (tertiary education)	31	High-tech patent grants	36
Foreign highly skilled personnel	24	► Graduates in Sciences	02	AI-related patent publications	33
Net flow of international students	28	Women with degrees	21	Robots in Education and R&D	32
► Female researchers	10	Computer science education index	21	AI articles	43
▷ Scientific and technical employment	51				

TECHNOLOGY

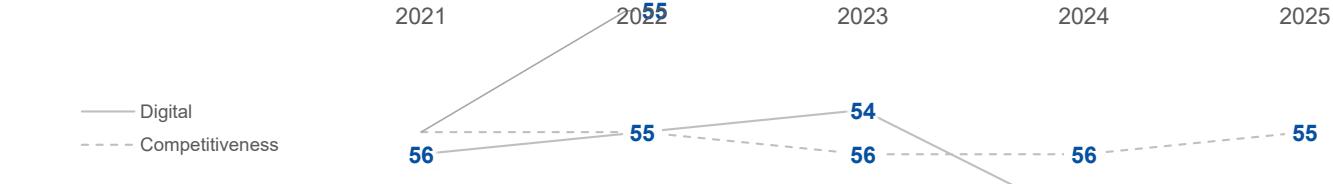
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	35	40	36	44	41
Capital	31	33	32	31	30
Technological framework	15	16	16	34	19
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
► Starting a business	54	IT & media stock market capitalization	17	► Communications technology	51
Enforcing contracts	27	Funding for technological development	28	Mobile broadband subscribers	16
Immigration laws	29	Banking and financial services	20	Wireless broadband	26
Development & application of tech.	32	Country credit rating	40	► Internet users	10
Scientific research legislation	38	Venture capital	25	Internet bandwidth speed	39
Intellectual property rights	48	Investment in Telecommunications	44	► High-tech exports (%)	05
▷ AI policies passed into law	50	AI private investment	33	Secure internet servers	43

FUTURE READINESS

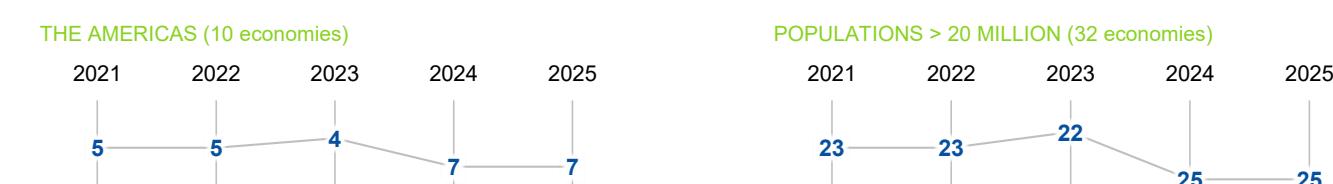

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	29	30	27	33	50
Business agility	27	35	37	47	43
IT integration	31	31	33	31	34

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	43	Opportunities and threats	40	E-Government	49
Internet retailing	48	World robots distribution	21	Public-private partnerships	23
▷ Tablet possession	50	Agility of companies	34	Cyber security	37
► Smartphone possession	08	Use of big data and analytics	43	Software piracy	45
Attitudes toward globalization	45	Knowledge transfer	46	Government cyber security capacity	19
Flexibility and adaptability	43	Entrepreneurial fear of failure	-	Privacy protection by law exists	34

MEXICO


DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)



OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	56	55	54	59	59
Knowledge	54	52	50	58	56
Technology	57	56	58	62	59
Future readiness	51	53	54	55	56

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

MEXICO

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

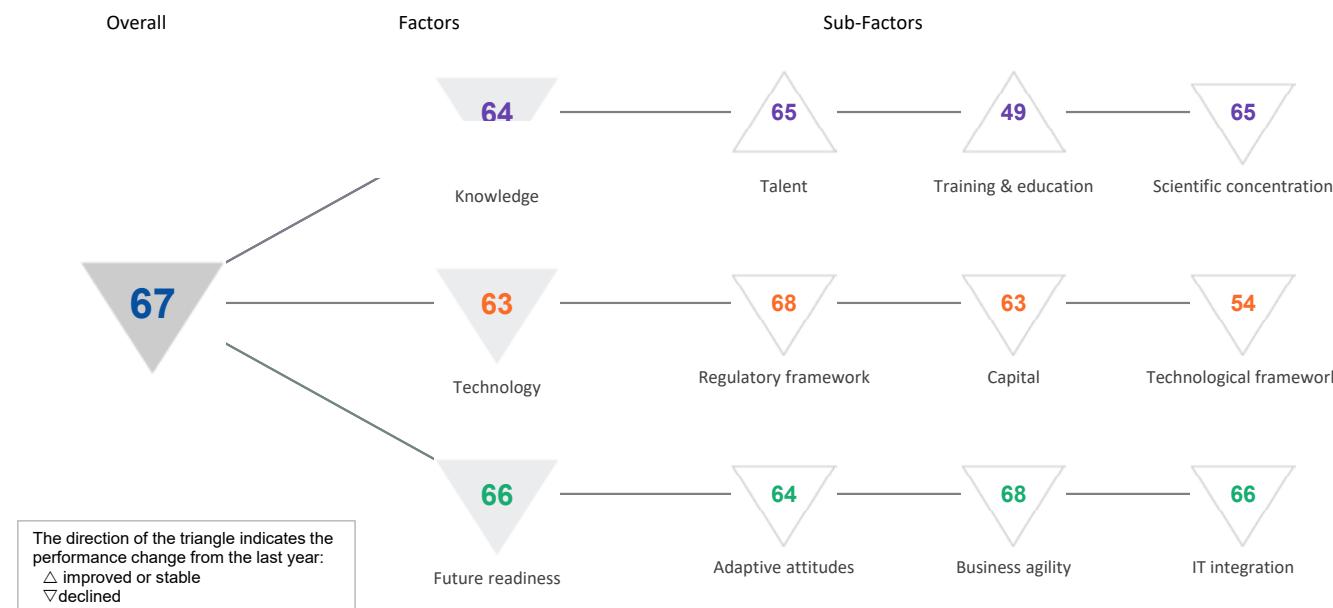
Sub-Factors	2021	2022	2023	2024	2025
Talent	51	54	52	58	60
Training & education	57	53	54	56	59
Scientific concentration	50	49	46	50	47

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	48	Employee training	55	Total expenditure on R&D (%)	58
International experience	28	Total public expenditure on education	58	Total R&D personnel per capita	55
▷ Management of cities	65	Higher education achievement	53	► R&D productivity by publication	07
Digital/Technological skills	62	► Pupil-teacher ratio (tertiary education)	21	High-tech patent grants	59
Foreign highly skilled personnel	37	Graduates in Sciences	30	AI-related patent publications	39
Net flow of international students	41	Women with degrees	54	► Robots in Education and R&D	10
Female researchers	39	Computer science education index	55	AI articles	60
Scientific and technical employment	34				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	54	56	59	63	64
Capital	57	55	55	60	60
Technological framework	54	54	55	58	55
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	46	► IT & media stock market capitalization	18	Communications technology	64
Enforcing contracts	32	▷ Funding for technological development	67	Mobile broadband subscribers	47
Immigration laws	51	Banking and financial services	57	Wireless broadband	57
▷ Development & application of tech.	65	Country credit rating	49	Internet users	57
▷ Scientific research legislation	67	Venture capital	59	Internet bandwidth speed	55
Intellectual property rights	57	Investment in Telecommunications	42	High-tech exports (%)	28
AI policies passed into law	48	AI private investment	28	Secure internet servers	60

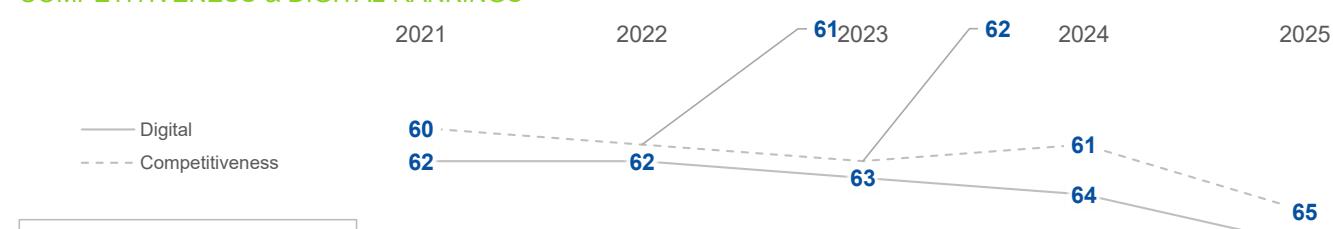
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	52	54	56	42	42
Business agility	41	46	53	53	51
IT integration	52	47	51	61	61

Sub-Factors	Rank	Business agility	Rank	IT integration	Rank
E-Participation	40	Opportunities and threats	55	E-Government	54
Internet retailing	40	► World robots distribution	09	Public-private partnerships	58
Tablet possession	46	Agility of companies	44	▷ Cyber security	66
Smartphone possession	48	Use of big data and analytics	56	Software piracy	42
Attitudes toward globalization	30	Knowledge transfer	60	Government cyber security capacity	51
Flexibility and adaptability	46	Entrepreneurial fear of failure	24	Privacy protection by law exists	54

MONGOLIA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	62	62	63	64	67
Knowledge	58	61	56	62	64
Technology	61	60	61	55	63
Future readiness	62	62	62	64	66

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

ASIA - PACIFIC (14 economies)

POPULATIONS < 20 MILLION (37 economies)

MONGOLIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	60	60	63	65	65
Training & education	39	47	37	53	49
Scientific concentration	61	61	61	62	65

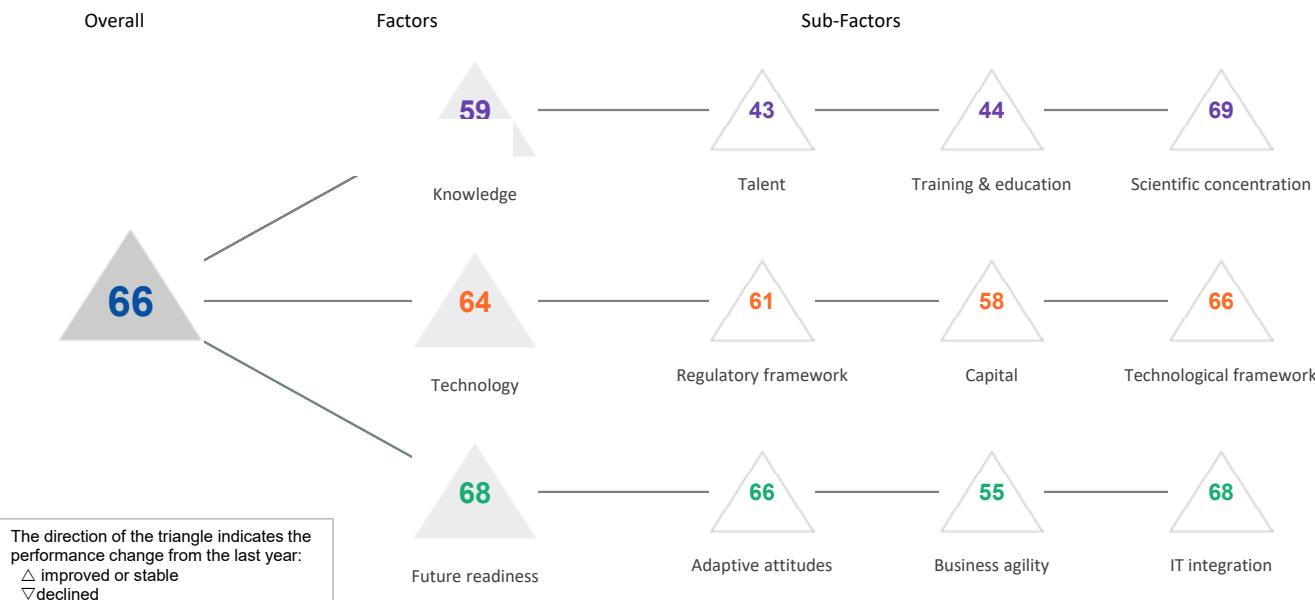
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	42	Employee training	35	Total expenditure on R&D (%)	-
International experience	67	Total public expenditure on education	38	Total R&D personnel per capita	44
Management of cities	68	► Higher education achievement	26	R&D productivity by publication	-
Digital/Technological skills	65	Pupil-teacher ratio (tertiary education)	52	High-tech patent grants	61
Foreign highly skilled personnel	62	Graduates in Sciences	56	AI-related patent publications	-
Net flow of international students	61	► Women with degrees	22	Robots in Education and R&D	-
► Female researchers	01	Computer science education index	60	AI articles	59
Scientific and technical employment	55				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	58	60	61	64	68
Capital	62	59	61	55	63
Technological framework	60	57	58	50	54

Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	43	IT & media stock market capitalization	-	Communications technology	65
Enforcing contracts	47	Funding for technological development	68	Mobile broadband subscribers	67
Immigration laws	65	Banking and financial services	66	Wireless broadband	49
► Development & application of tech.	69	Country credit rating	63	Internet users	55
Scientific research legislation	68	Venture capital	68	Internet bandwidth speed	63
► Intellectual property rights	68	► Investment in Telecommunications	05	► High-tech exports (%)	10
AI policies passed into law	66	AI private investment	-	Secure internet servers	50

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	37	51	44	51	64
Business agility	63	63	64	67	68
IT integration	62	62	62	65	66

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	32	Opportunities and threats	67	E-Government	39
Internet retailing	59	World robots distribution	-	► Public-private partnerships	69
Tablet possession	-	Agility of companies	66	► Cyber security	69
Smartphone possession	62	Use of big data and analytics	66	Software piracy	-
Attitudes toward globalization	64	► Knowledge transfer	69	Government cyber security capacity	58
Flexibility and adaptability	41	Entrepreneurial fear of failure	-	Privacy protection by law exists	56

NAMIBIA

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	-	-	-	-	66
Knowledge	-	-	-	-	59
Technology	-	-	-	-	64
Future readiness	-	-	-	-	68

COMPETITIVENESS & DIGITAL RANKINGS

	2021	2022	2023	2024	2025
Digital	66	68	66	68	66
Competitiveness	66	68	66	68	66

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

2021	2022	2023	2024	2025
44	44	44	44	44

POPULATIONS < 20 MILLION (37 economies)

2021	2022	2023	2024	2025
36	36	36	36	36

NAMIBIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

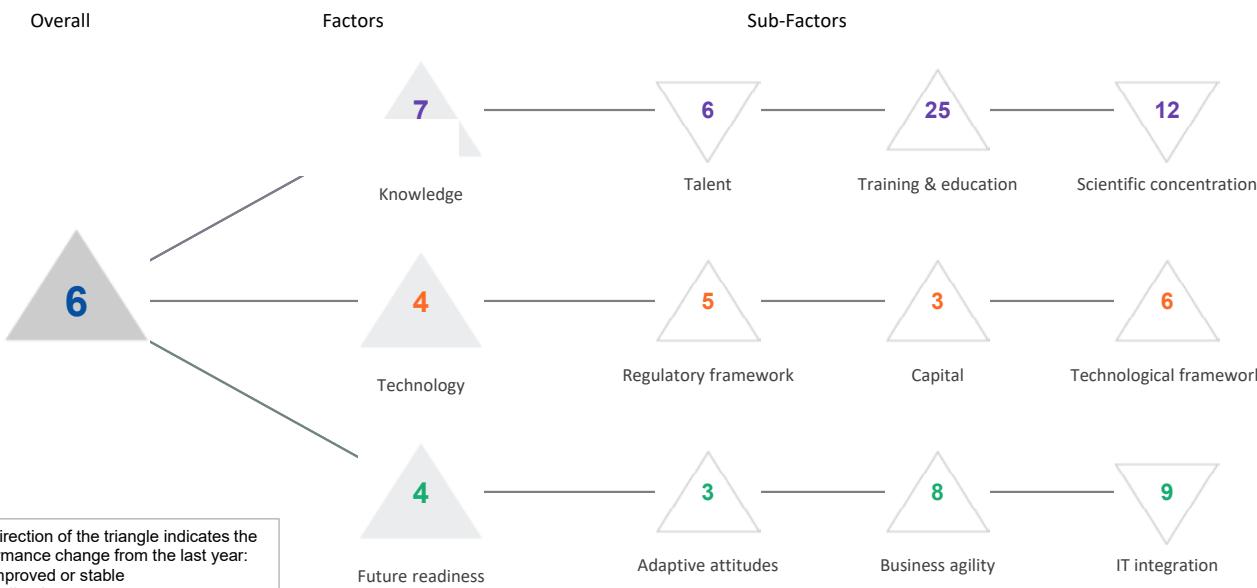
▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	-	-	-	-	43
Training & education	-	-	-	-	44
Scientific concentration	-	-	-	-	69
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	53	Total expenditure on R&D (%)	44
International experience	62	► Total public expenditure on education	01	Total R&D personnel per capita	57
Management of cities	60	Higher education achievement	-	R&D productivity by publication	61
▷ Digital/Technological skills	68	Pupil-teacher ratio (tertiary education)	41	High-tech patent grants	58
Foreign highly skilled personnel	51	Graduates in Sciences	62	AI-related patent publications	-
Net flow of international students	50	Women with degrees	-	Robots in Education and R&D	-
► Female researchers	09	Computer science education index	60	AI articles	56
Scientific and technical employment	-				

TECHNOLOGY

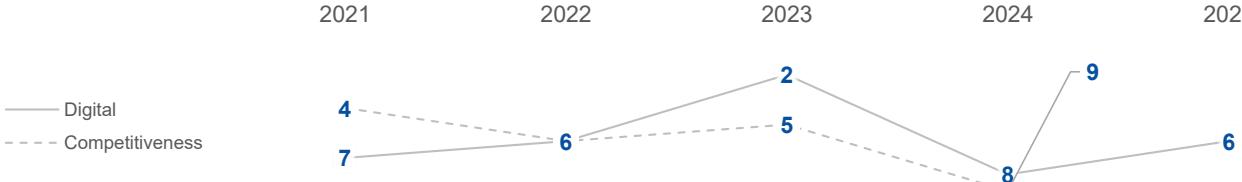
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	-	-	-	-	61
Capital	-	-	-	-	58
Technological framework	-	-	-	-	66
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	-	IT & media stock market capitalization	-	Communications technology	60
Enforcing contracts	46	Funding for technological development	60	Mobile broadband subscribers	64
▷ Immigration laws	69	Banking and financial services	46	Wireless broadband	38
Development & application of tech.	62	Country credit rating	59	Internet users	65
Scientific research legislation	62	Venture capital	65	► Internet bandwidth speed	69
Intellectual property rights	56	Investment in Telecommunications	34	► High-tech exports (%)	68
AI policies passed into law	53	AI private investment	-	Secure internet servers	61


FUTURE READINESS

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	-	-	-	-	66
Business agility	-	-	-	-	55
IT integration	-	-	-	-	68
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	64	Opportunities and threats	61	E-Government	64
Internet retailing	-	World robots distribution	-	▷ Public-private partnerships	66
Tablet possession	-	Agility of companies	61	Cyber security	65
Smartphone possession	-	Use of big data and analytics	50	Software piracy	-
Attitudes toward globalization	59	Knowledge transfer	64	Government cyber security capacity	64
Flexibility and adaptability	65	Entrepreneurial fear of failure	-	Privacy protection by law exists	65

NETHERLANDS

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	07	06	02	08	06
Knowledge	11	08	07	09	07
Technology	07	04	05	08	04
Future readiness	04	05	04	07	04

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

NETHERLANDS

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

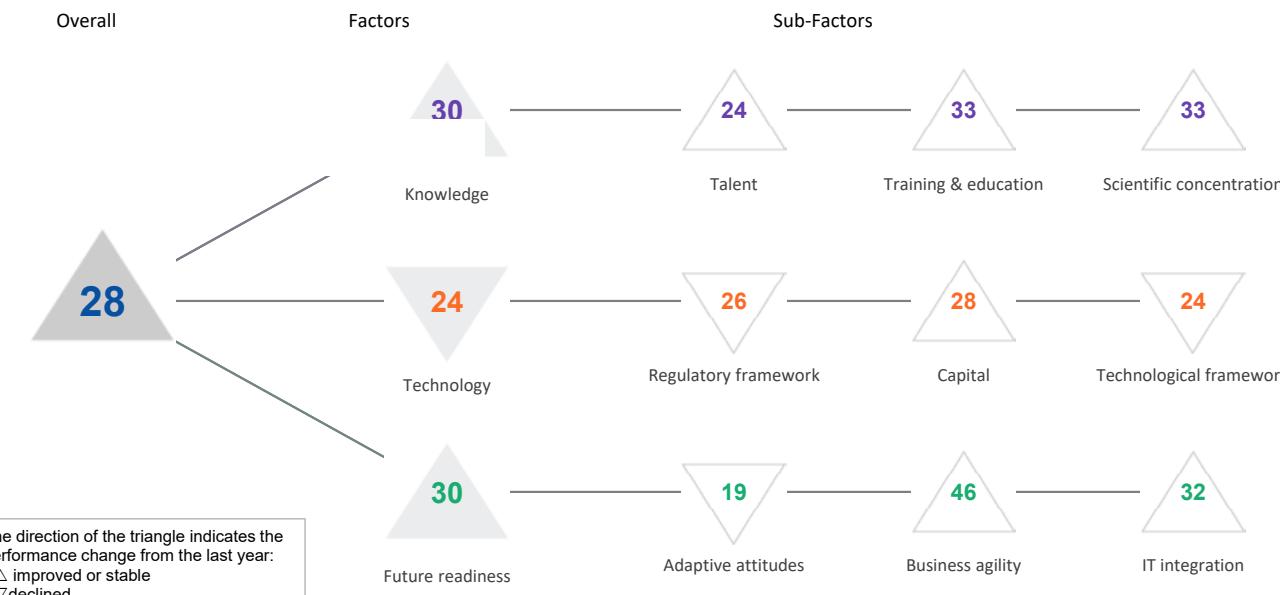
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	04	04	03	04	06
Training & education	28	25	23	26	25
Scientific concentration	16	12	12	11	12
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	10	Employee training	16	Total expenditure on R&D (%)	15
► International experience	04	Total public expenditure on education	22	Total R&D personnel per capita	06
Management of cities	17	Higher education achievement	16	R&D productivity by publication	31
Digital/Technological skills	12	Pupil-teacher ratio (tertiary education)	22	High-tech patent grants	12
Foreign highly skilled personnel	07	Graduates in Sciences	45	AI-related patent publications	12
Net flow of international students	06	Women with degrees	26	Robots in Education and R&D	21
▷ Female researchers	49	Computer science education index	25	AI articles	13
Scientific and technical employment	05				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	07	07	02	13	05
Capital	03	03	02	06	03
Technological framework	10	10	10	13	06
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	13	IT & media stock market capitalization	02	Communications technology	04
▷ Enforcing contracts	48	Funding for technological development	13	Mobile broadband subscribers	23
Immigration laws	21	Banking and financial services	13	▷ Wireless broadband	40
Development & application of tech.	13	Country credit rating	01	Internet users	14
Scientific research legislation	09	Venture capital	15	Internet bandwidth speed	10
Intellectual property rights	04	▷ Investment in Telecommunications	54	High-tech exports (%)	18
AI policies passed into law	06	AI private investment	12	► Secure internet servers	03

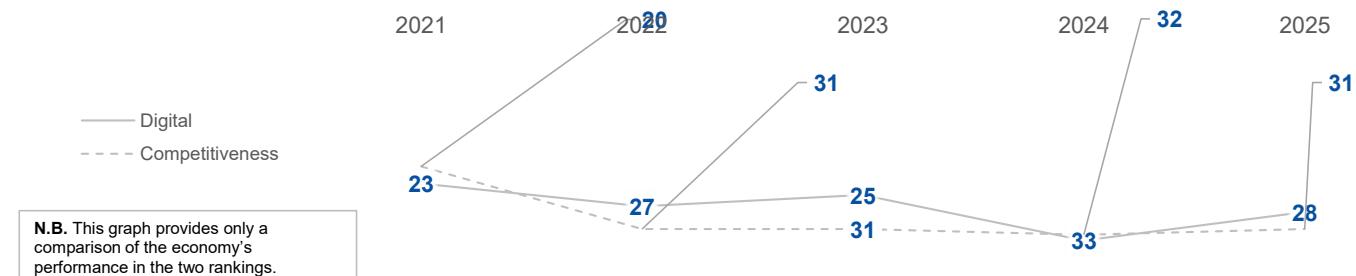
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	06	02	06	09	03
Business agility	08	08	08	14	08
IT integration	06	09	07	08	09

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	11	Opportunities and threats	10	E-Government	10
Internet retailing	11	World robots distribution	19	Public-private partnerships	15
Tablet possession	09	Agility of companies	06	Cyber security	22
Smartphone possession	27	Use of big data and analytics	17	Software piracy	13
► Attitudes toward globalization	03	Knowledge transfer	07	Government cyber security capacity	38
Flexibility and adaptability	16	Entrepreneurial fear of failure	10	Privacy protection by law exists	05

NEW ZEALAND

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	23	27	25	33	28
Knowledge	28	33	34	39	30
Technology	21	28	21	17	24
Future readiness	19	26	25	39	30

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

ASIA - PACIFIC (14 economies)

POPULATIONS < 20 MILLION (37 economies)

NEW ZEALAND

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

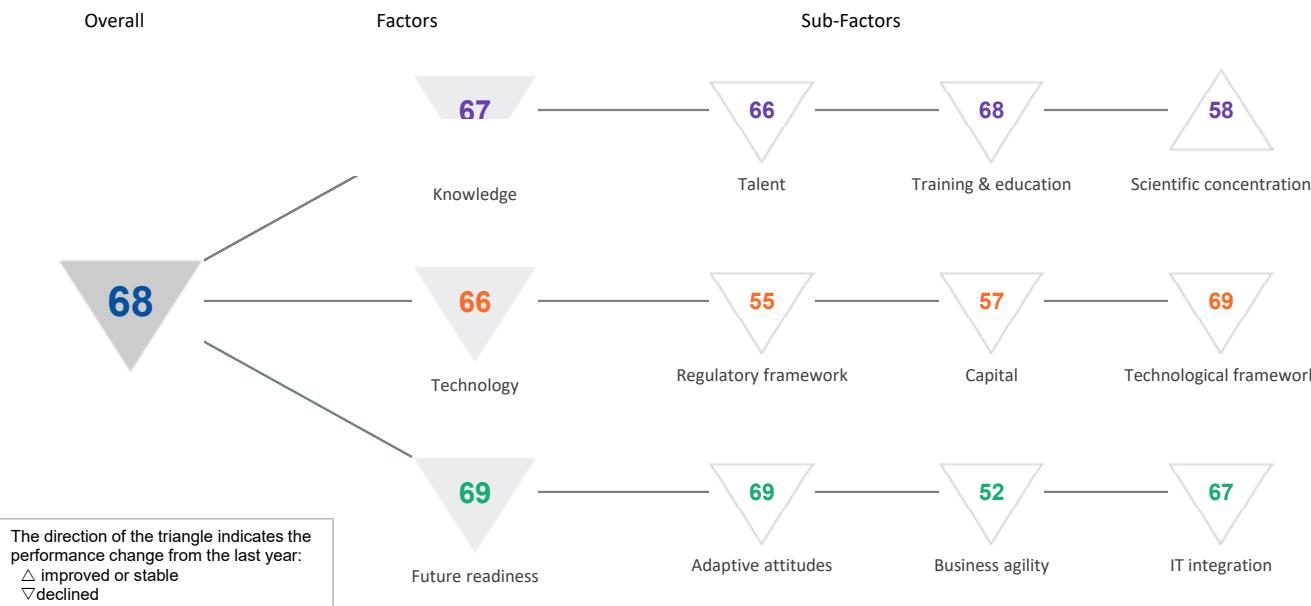
Sub-Factors	2021	2022	2023	2024	2025
Talent	14	32	33	46	24
Training & education	36	32	32	35	33
Scientific concentration	33	32	30	34	33

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	24	Employee training	47	Total expenditure on R&D (%)	29
▷ International experience	60	Total public expenditure on education	12	Total R&D personnel per capita	22
Management of cities	45	Higher education achievement	29	R&D productivity by publication	41
Digital/Technological skills	28	Pupil-teacher ratio (tertiary education)	34	High-tech patent grants	38
Foreign highly skilled personnel	30	Graduates in Sciences	32	AI-related patent publications	21
Net flow of international students	08	Women with degrees	28	Robots in Education and R&D	45
Female researchers	-	Computer science education index	20	AI articles	32
▷ Scientific and technical employment	09				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025	
Regulatory framework	24	33	24	11	26	
Capital	22	30	19	32	28	
Technological framework	23	25	24	15	24	
Regulatory framework		Rank	Capital		Rank	
▷ Starting a business	01		IT & media stock market capitalization	32	Technological framework	Rank
Enforcing contracts	19		Funding for technological development	44	Communications technology	38
Immigration laws	27		Banking and financial services	18	Mobile broadband subscribers	15
Development & application of tech.	28		Country credit rating	11	Wireless broadband	10
Scientific research legislation	34		Venture capital	26	Internet users	17
Intellectual property rights	16		Investment in Telecommunications	32	Internet bandwidth speed	22
AI policies passed into law	36		AI private investment	43	High-tech exports (%)	38
					Secure internet servers	37

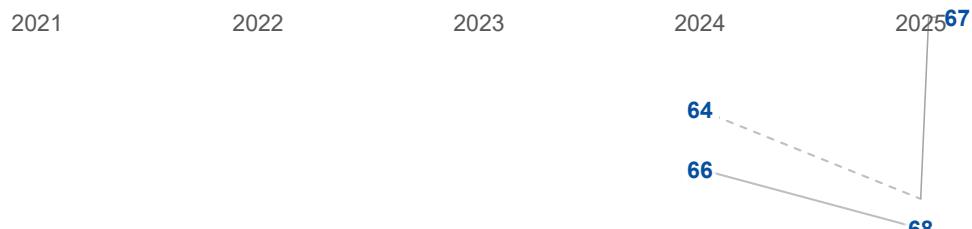
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	16	15	12	14	19
Business agility	30	49	40	64	46
IT integration	18	27	22	43	32

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	11	Opportunities and threats	42	E-Government	16
Internet retailing	17	World robots distribution	41	Public-private partnerships	42
▷ Tablet possession	06	Agility of companies	47	Cyber security	36
Smartphone possession	40	Use of big data and analytics	40	▷ Software piracy	02
Attitudes toward globalization	20	Knowledge transfer	27	▷ Government cyber security capacity	46
▷ Flexibility and adaptability	48	Entrepreneurial fear of failure	-	Privacy protection by law exists	45

NIGERIA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	-	-	-	66	68
Knowledge	-	-	-	65	67
Technology	-	-	-	63	66
Future readiness	-	-	-	67	69

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS > 20 MILLION (32 economies)

NIGERIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

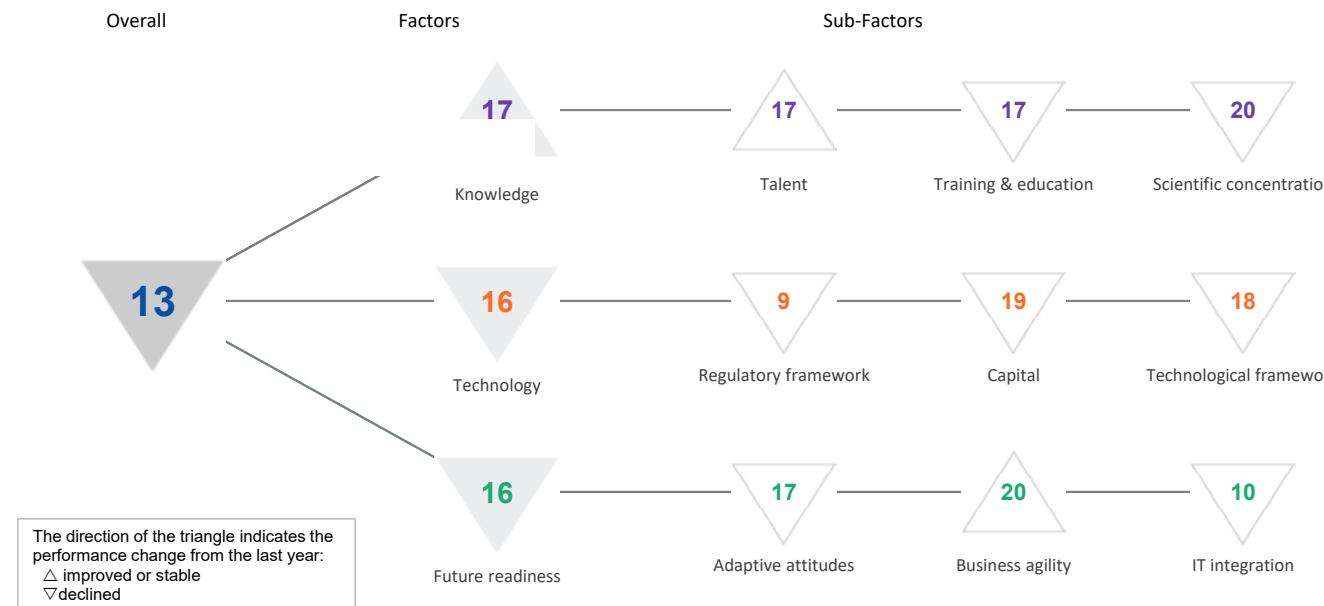
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	-	-	-	49	66
Training & education	-	-	-	66	68
Scientific concentration	-	-	-	63	58
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	57	Total expenditure on R&D (%)	50
International experience	47	▷ Total public expenditure on education	68	Total R&D personnel per capita	-
Management of cities	54	Higher education achievement	-	► R&D productivity by publication	29
Digital/Technological skills	64	Pupil-teacher ratio (tertiary education)	-	High-tech patent grants	-
Foreign highly skilled personnel	45	Graduates in Sciences	-	AI-related patent publications	52
Net flow of international students	-	Women with degrees	61	Robots in Education and R&D	-
Female researchers	48	Computer science education index	56	▷ AI articles	68
Scientific and technical employment	58				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	-	-	-	51	55
Capital	-	-	-	28	57
Technological framework	-	-	-	67	69
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	44	► IT & media stock market capitalization	11	► Communications technology	68
Enforcing contracts	44	Funding for technological development	64	Mobile broadband subscribers	60
Immigration laws	41	Banking and financial services	65	▷ Wireless broadband	68
Development & application of tech.	59	Country credit rating	64	Internet users	67
Scientific research legislation	48	Venture capital	63	Internet bandwidth speed	65
Intellectual property rights	66	► Investment in Telecommunications	19	High-tech exports (%)	59
AI policies passed into law	44	AI private investment	51	▷ Secure internet servers	69

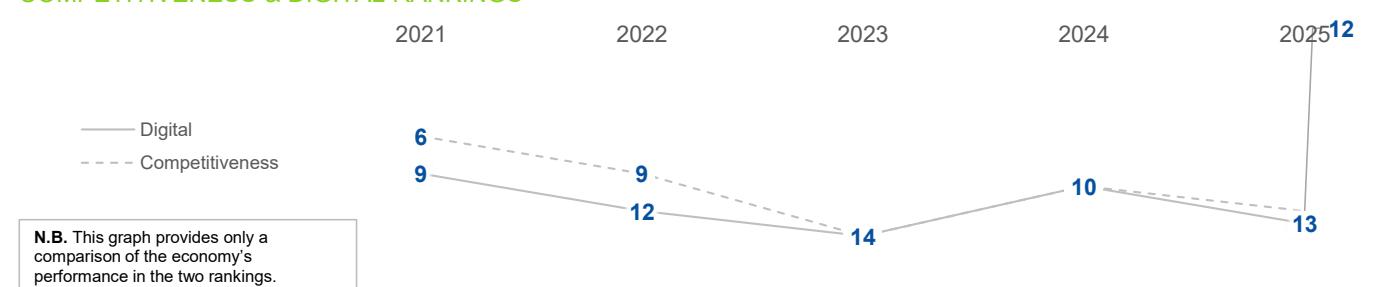
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	-	-	-	67	69
Business agility	-	-	-	50	52
IT integration	-	-	-	66	67

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	62	Opportunities and threats	56	E-Government	66
Internet retailing	62	World robots distribution	-	Public-private partnerships	50
Tablet possession	58	Agility of companies	57	Cyber security	61
Smartphone possession	64	Use of big data and analytics	38	Software piracy	63
Attitudes toward globalization	57	Knowledge transfer	59	Government cyber security capacity	60
Flexibility and adaptability	52	Entrepreneurial fear of failure	-	► Privacy protection by law exists	25

NORWAY

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	09	12	14	10	13
Knowledge	17	19	20	17	17
Technology	06	10	14	05	16
Future readiness	08	09	15	10	16

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

NORWAY

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

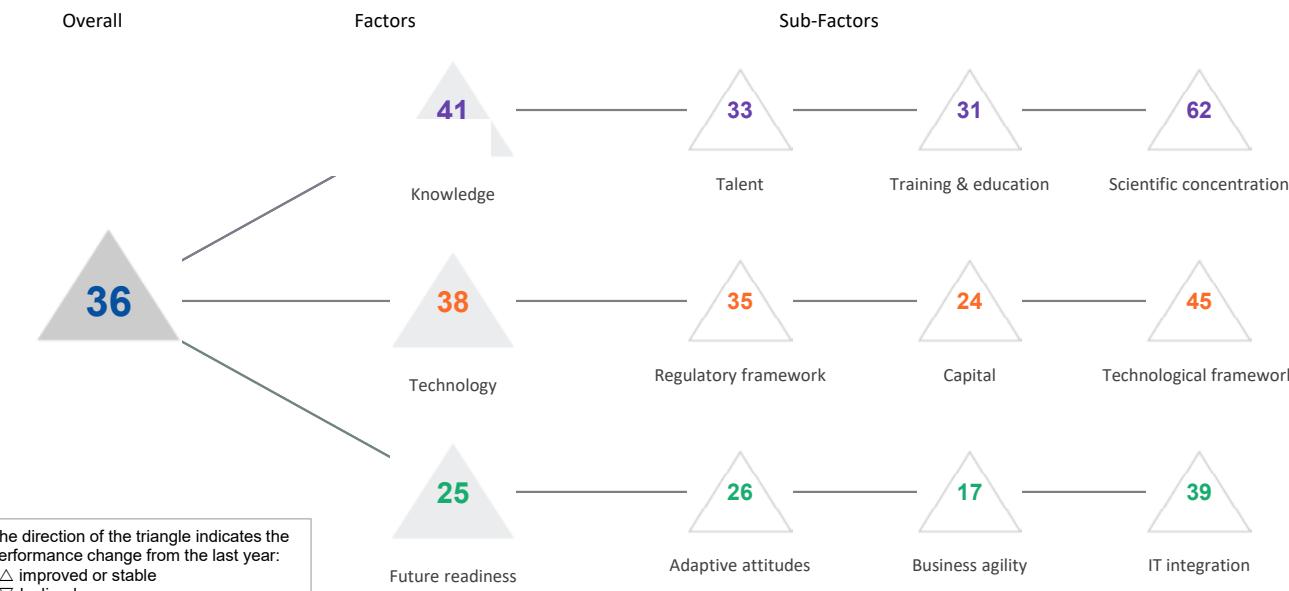
Sub-Factors	2021	2022	2023	2024	2025
Talent	16	18	21	22	17
Training & education	11	14	16	15	17
Scientific concentration	22	22	22	16	20

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	32	Employee training	07	Total expenditure on R&D (%)	18
International experience	18	Total public expenditure on education	35	Total R&D personnel per capita	13
Management of cities	22	Higher education achievement	14	R&D productivity by publication	36
Digital/Technological skills	06	► Pupil-teacher ratio (tertiary education)	05	High-tech patent grants	26
Foreign highly skilled personnel	22	Graduates in Sciences	36	AI-related patent publications	26
▷ Net flow of international students	45	Women with degrees	11	Robots in Education and R&D	24
Female researchers	28	Computer science education index	38	► AI articles	06
Scientific and technical employment	17				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	01	04	13	06	09
Capital	06	04	20	05	19
Technological framework	12	14	21	10	18
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	14	IT & media stock market capitalization	30	Communications technology	18
► Enforcing contracts	03	Funding for technological development	08	Mobile broadband subscribers	13
Immigration laws	20	Banking and financial services	33	▷ Wireless broadband	44
Development & application of tech.	11	► Country credit rating	01	Internet users	08
Scientific research legislation	11	Venture capital	13	Internet bandwidth speed	21
Intellectual property rights	20	▷ Investment in Telecommunications	47	High-tech exports (%)	16
▷ AI policies passed into law	48	AI private investment	23	Secure internet servers	26

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	08	06	15	12	17
Business agility	11	13	26	20	20
IT integration	08	12	17	09	10

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	19	Opportunities and threats	28	E-Government	15
Internet retailing	09	World robots distribution	39	Public-private partnerships	16
► Tablet possession	03	Agility of companies	19	Cyber security	18
Smartphone possession	22	Use of big data and analytics	24	Software piracy	10
▷ Attitudes toward globalization	42	Knowledge transfer	18	Government cyber security capacity	33
Flexibility and adaptability	31	Entrepreneurial fear of failure	11	Privacy protection by law exists	31

OMAN

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	-	-	-	-	36
Knowledge	-	-	-	-	41
Technology	-	-	-	-	38
Future readiness	-	-	-	-	25

COMPETITIVENESS & DIGITAL RANKINGS

	2021	2022	2023	2024	2025
Digital	28	36			
Competitiveness					

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

2021	2022	2023	2024	2025
				25

POPULATIONS < 20 MILLION (37 economies)

2021	2022	2023	2024	2025
				23

OMAN

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

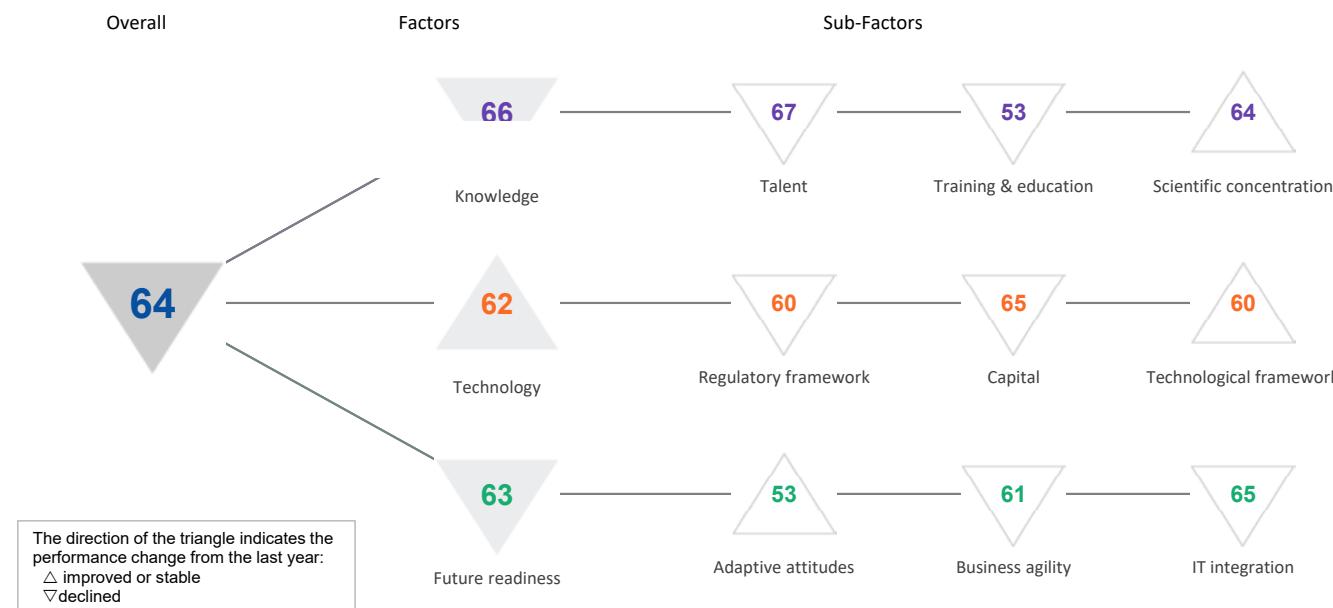
▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	-	-	-	-	33
Training & education	-	-	-	-	31
Scientific concentration	-	-	-	-	62
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	17	Total expenditure on R&D (%)	56
International experience	16	Total public expenditure on education	28	Total R&D personnel per capita	-
Management of cities	11	Higher education achievement	19	R&D productivity by publication	46
Digital/Technological skills	19	Pupil-teacher ratio (tertiary education)	38	High-tech patent grants	52
Foreign highly skilled personnel	18	► Graduates in Sciences	06	AI-related patent publications	52
▷ Net flow of international students	60	Women with degrees	-	Robots in Education and R&D	-
Female researchers	37	▷ Computer science education index	60	AI articles	39
Scientific and technical employment	48				

TECHNOLOGY

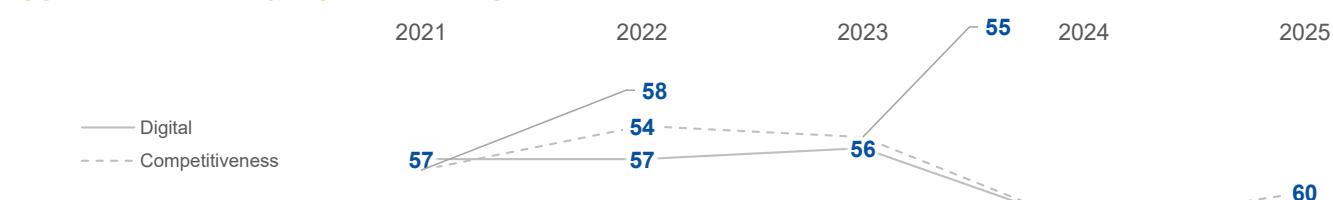
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	-	-	-	-	35
Capital	-	-	-	-	24
Technological framework	-	-	-	-	45
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	24	IT & media stock market capitalization	-	Communications technology	29
Enforcing contracts	43	Funding for technological development	25	► Mobile broadband subscribers	06
Immigration laws	46	Banking and financial services	23	Wireless broadband	49
Development & application of tech.	16	Country credit rating	56	Internet users	22
Scientific research legislation	30	Venture capital	27	Internet bandwidth speed	52
Intellectual property rights	23	Investment in Telecommunications	14	High-tech exports (%)	56
▷ AI policies passed into law	60	AI private investment	-	▷ Secure internet servers	65


FUTURE READINESS

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	-	-	-	-	26
Business agility	-	-	-	-	17
IT integration	-	-	-	-	39
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	49	Opportunities and threats	31	E-Government	36
Internet retailing	52	World robots distribution	-	Public-private partnerships	12
Tablet possession	12	Agility of companies	36	► Cyber security	04
▷ Smartphone possession	04	Use of big data and analytics	29	Software piracy	54
Attitudes toward globalization	22	Knowledge transfer	22	Government cyber security capacity	50
Flexibility and adaptability	14	► Entrepreneurial fear of failure	03	▷ Privacy protection by law exists	57

PERU

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	57	57	56	63	64
Knowledge	59	56	55	63	66
Technology	56	57	57	64	62
Future readiness	54	54	55	60	63

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

THE AMERICAS (10 economies)

POPULATIONS > 20 MILLION (32 economies)

PERU

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	59	59	59	64	67
Training & education	41	37	38	47	53
Scientific concentration	60	60	62	64	64

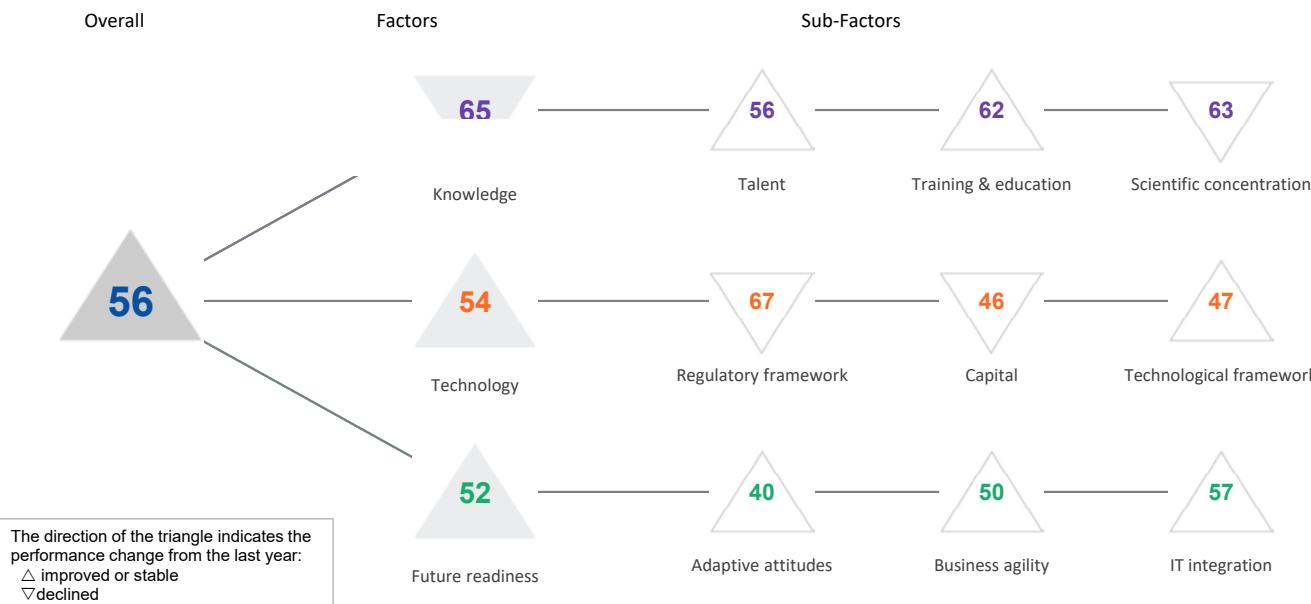
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	50	Employee training	67	Total expenditure on R&D (%)	-
International experience	51	Total public expenditure on education	45	Total R&D personnel per capita	-
▷ Management of cities	66	Higher education achievement	28	R&D productivity by publication	-
Digital/Technological skills	63	Pupil-teacher ratio (tertiary education)	45	High-tech patent grants	63
Foreign highly skilled personnel	48	Graduates in Sciences	-	AI-related patent publications	52
Net flow of international students	-	Women with degrees	38	Robots in Education and R&D	43
Female researchers	45	Computer science education index	57	AI articles	51
Scientific and technical employment	53				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	49	51	51	58	60
Capital	43	53	51	62	65
Technological framework	58	59	59	61	60

Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	58	IT & media stock market capitalization	56	Communications technology	63
Enforcing contracts	49	Funding for technological development	63	Mobile broadband subscribers	58
▷ Immigration laws	31	Banking and financial services	54	▷ Wireless broadband	64
Development & application of tech.	57	Country credit rating	47	Internet users	59
Scientific research legislation	56	Venture capital	57	Internet bandwidth speed	41
Intellectual property rights	61	Investment in Telecommunications	51	High-tech exports (%)	55
AI policies passed into law	58	AI private investment	54	Secure internet servers	55

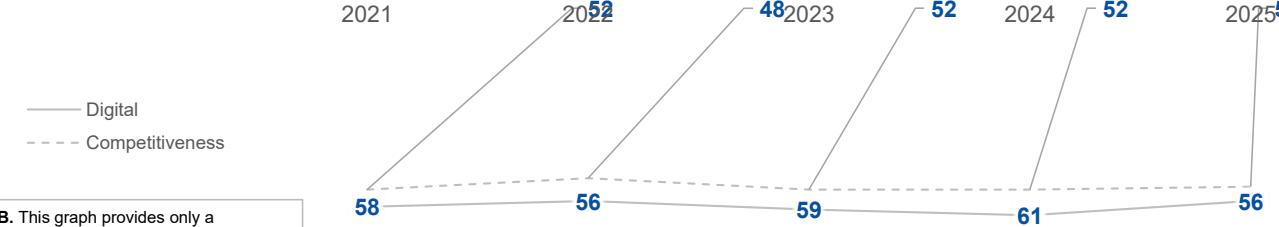
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	54	53	47	54	53
Business agility	39	39	48	49	61
IT integration	56	59	61	63	65

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
▷ E-Participation	37	Opportunities and threats	49	E-Government	50
Internet retailing	54	World robots distribution	53	Public-private partnerships	56
Tablet possession	48	Agility of companies	53	▷ Cyber security	64
▷ Smartphone possession	39	Use of big data and analytics	60	Software piracy	56
Attitudes toward globalization	44	Knowledge transfer	61	▷ Government cyber security capacity	67
Flexibility and adaptability	53	Entrepreneurial fear of failure	-	Privacy protection by law exists	47

PHILIPPINES

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	58	56	59	61	56
Knowledge	63	62	63	64	65
Technology	54	49	51	56	54
Future readiness	57	58	59	58	52

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

ASIA - PACIFIC (14 economies)

POPULATIONS > 20 MILLION (32 economies)

PHILIPPINES

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

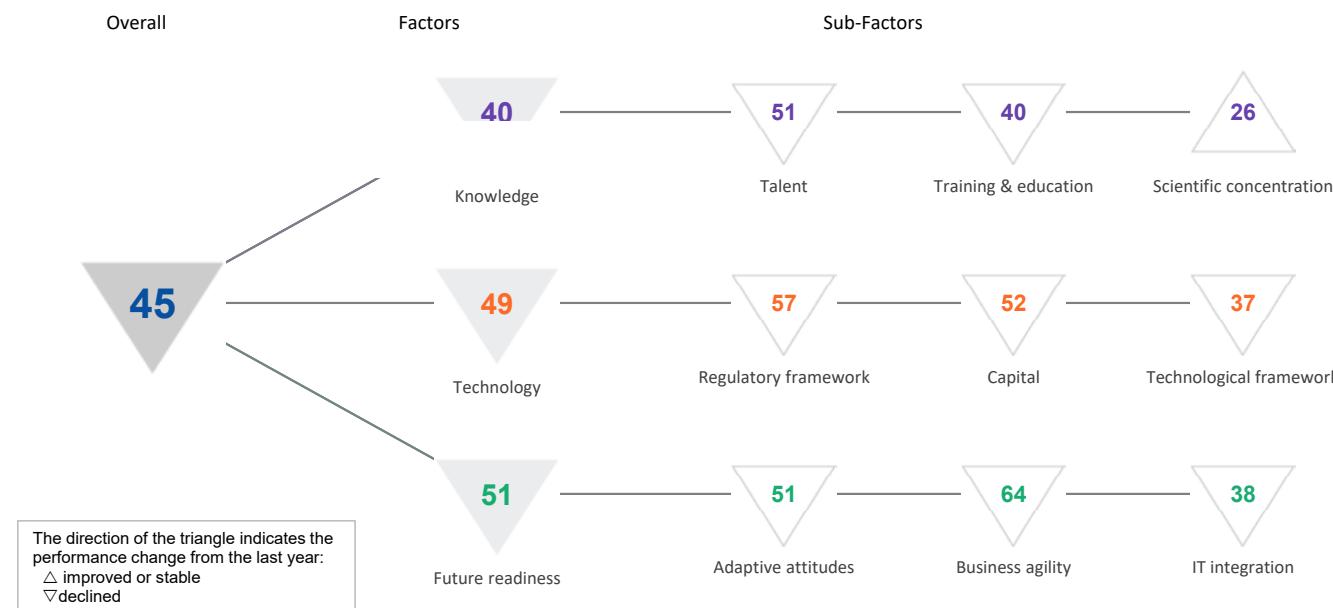
Sub-Factors	2021	2022	2023	2024	2025
Talent	55	55	56	60	56
Training & education	61	61	62	62	62
Scientific concentration	56	57	58	61	63

Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	58	Employee training	46	Total expenditure on R&D (%)	57
International experience	50	Total public expenditure on education	55	Total R&D personnel per capita	53
Management of cities	51	Higher education achievement	55	R&D productivity by publication	32
Digital/Technological skills	47	Pupil-teacher ratio (tertiary education)	53	High-tech patent grants	45
Foreign highly skilled personnel	54	Graduates in Sciences	37	AI-related patent publications	48
Net flow of international students	46	Women with degrees	58	Robots in Education and R&D	51
► Female researchers	02	Computer science education index	59	▷ AI articles	65
Scientific and technical employment	59				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	62	62	63	66	67
Capital	40	40	41	45	46
Technological framework	49	45	43	53	47
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
▷ Starting a business	66	IT & media stock market capitalization	39	▷ Communications technology	66
▷ Enforcing contracts	66	Funding for technological development	58	Mobile broadband subscribers	37
Immigration laws	48	Banking and financial services	39	Wireless broadband	30
Development & application of tech.	49	Country credit rating	45	Internet users	53
Scientific research legislation	55	Venture capital	56	Internet bandwidth speed	56
Intellectual property rights	58	► Investment in Telecommunications	09	► High-tech exports (%)	03
AI policies passed into law	40	AI private investment	47	Secure internet servers	63

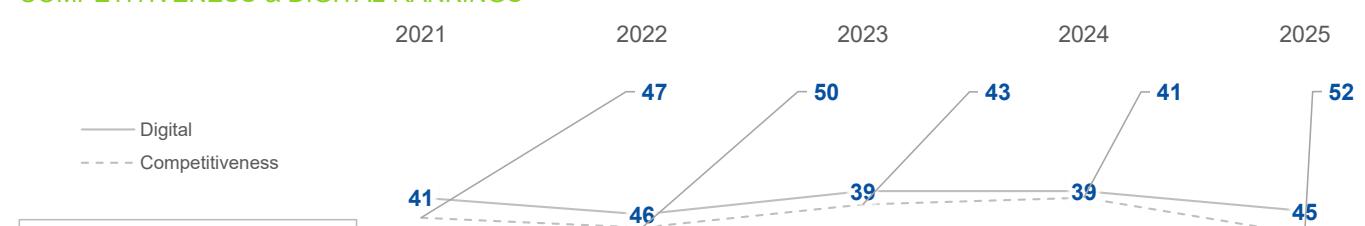
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	60	58	59	52	40
Business agility	37	45	50	54	50
IT integration	57	57	60	58	57

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	42	Opportunities and threats	45	E-Government	58
Internet retailing	55	World robots distribution	38	► Public-private partnerships	26
Tablet possession	52	Agility of companies	40	Cyber security	60
Smartphone possession	54	Use of big data and analytics	41	Software piracy	57
Attitudes toward globalization	32	Knowledge transfer	52	▷ Government cyber security capacity	63
► Flexibility and adaptability	13	Entrepreneurial fear of failure	-	Privacy protection by law exists	32

POLAND

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	41	46	39	39	45
Knowledge	38	42	37	37	40
Technology	41	46	44	37	49
Future readiness	39	43	40	42	51

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS > 20 MILLION (32 economies)

POLAND

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

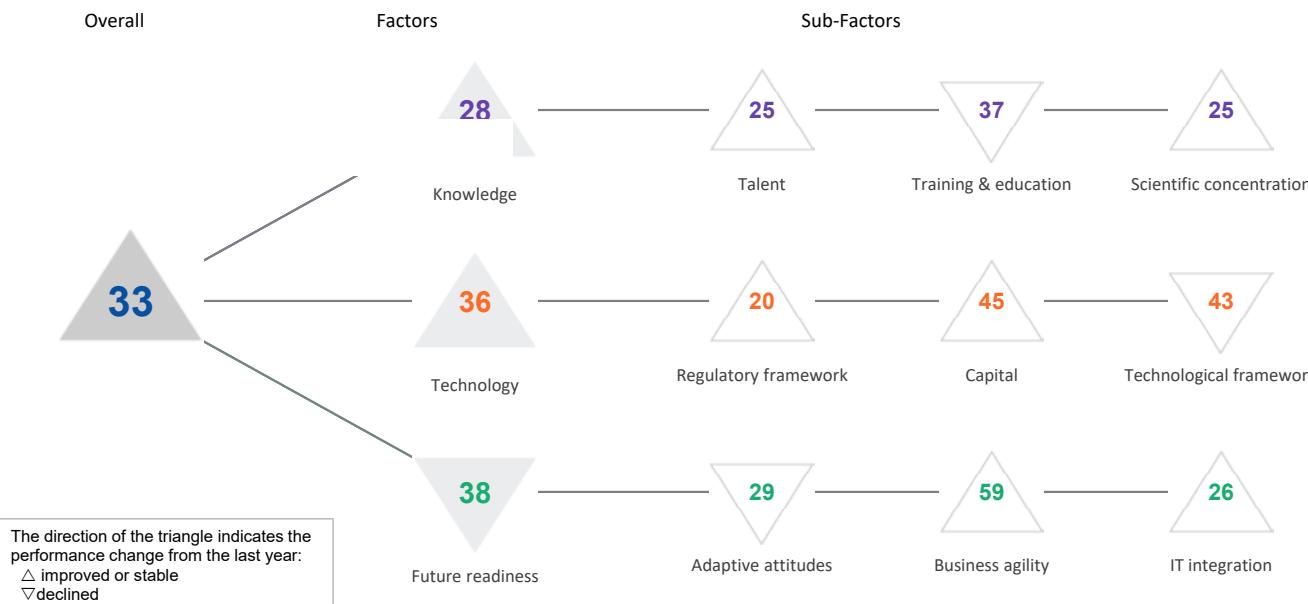
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	41	48	36	40	51
Training & education	44	42	39	39	40
Scientific concentration	28	30	28	37	26
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
► Educational assessment PISA - Math	12	▷ Employee training	65	Total expenditure on R&D (%)	26
International experience	61	Total public expenditure on education	27	Total R&D personnel per capita	33
Management of cities	53	Higher education achievement	27	R&D productivity by publication	26
Digital/Technological skills	61	Pupil-teacher ratio (tertiary education)	30	High-tech patent grants	39
Foreign highly skilled personnel	55	Graduates in Sciences	42	AI-related patent publications	25
Net flow of international students	29	Women with degrees	30	► Robots in Education and R&D	14
Female researchers	34	Computer science education index	37	AI articles	40
Scientific and technical employment	32				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	53	57	49	46	57
Capital	47	49	43	44	52
Technological framework	31	33	37	28	37
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	56	IT & media stock market capitalization	37	Communications technology	59
Enforcing contracts	38	Funding for technological development	57	Mobile broadband subscribers	20
Immigration laws	57	Banking and financial services	49	► Wireless broadband	05
Development & application of tech.	63	Country credit rating	37	Internet users	47
Scientific research legislation	58	Venture capital	38	Internet bandwidth speed	29
Intellectual property rights	63	Investment in Telecommunications	28	High-tech exports (%)	43
► AI policies passed into law	10	AI private investment	36	Secure internet servers	27

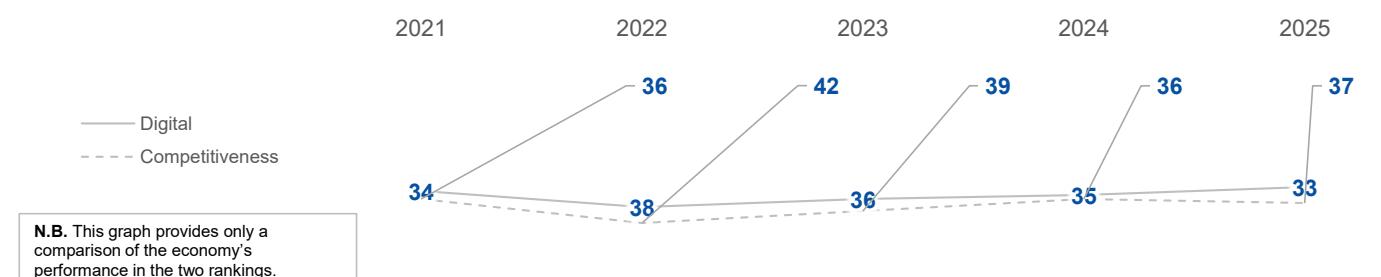
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	28	37	45	43	51
Business agility	44	47	28	43	64
IT integration	45	51	44	35	38

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	37	▷ Opportunities and threats	64	E-Government	33
Internet retailing	25	World robots distribution	18	Public-private partnerships	54
► Tablet possession	10	Agility of companies	59	Cyber security	54
Smartphone possession	56	▷ Use of big data and analytics	64	Software piracy	36
Attitudes toward globalization	65	Knowledge transfer	53	Government cyber security capacity	27
Flexibility and adaptability	64	Entrepreneurial fear of failure	42	Privacy protection by law exists	16

PORTUGAL

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	34	38	36	35	33
Knowledge	32	29	31	29	28
Technology	38	39	40	36	36
Future readiness	38	40	36	37	38

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

PORTUGAL

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

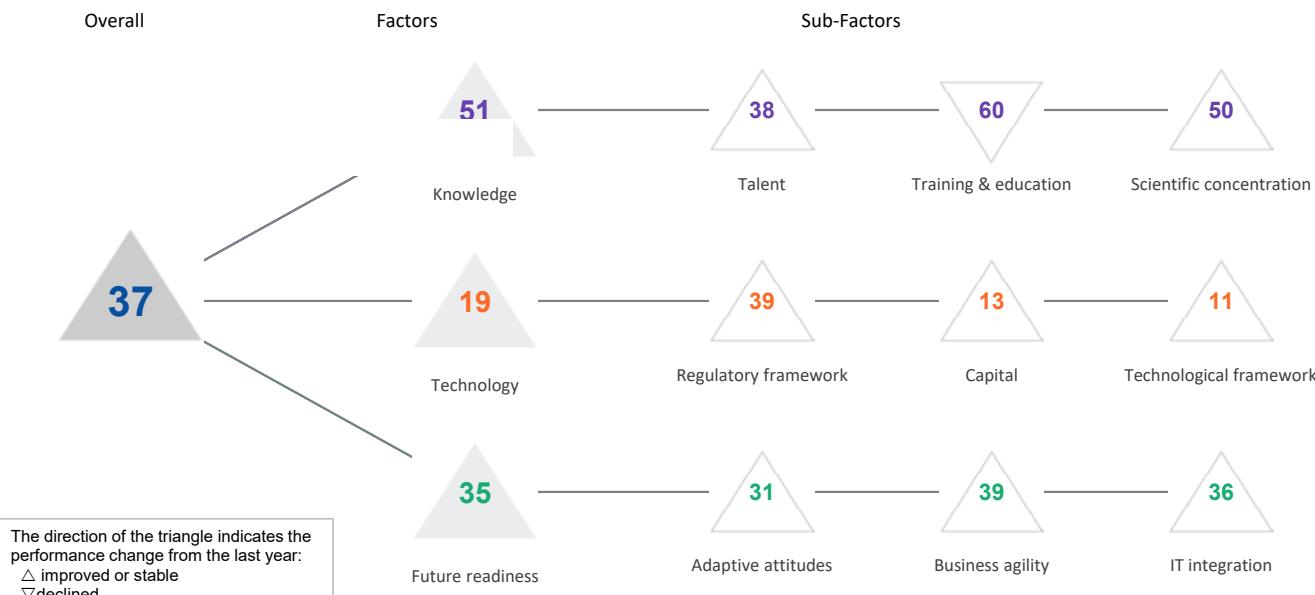
Sub-Factors	2021	2022	2023	2024	2025
Talent	22	29	29	28	25
Training & education	38	36	34	34	37
Scientific concentration	27	27	26	26	25

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	30	▷ Employee training	61	Total expenditure on R&D (%)	24
International experience	45	Total public expenditure on education	41	Total R&D personnel per capita	21
Management of cities	27	Higher education achievement	40	R&D productivity by publication	33
Digital/Technological skills	21	► Pupil-teacher ratio (tertiary education)	10	High-tech patent grants	30
Foreign highly skilled personnel	41	Graduates in Sciences	19	AI-related patent publications	29
Net flow of international students	17	Women with degrees	39	Robots in Education and R&D	31
Female researchers	20	Computer science education index	35	AI articles	21
Scientific and technical employment	27				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	21	19	27	26	20
Capital	44	48	49	50	45
Technological framework	46	48	46	42	43
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	31	IT & media stock market capitalization	44	► Communications technology	08
Enforcing contracts	29	Funding for technological development	41	Mobile broadband subscribers	45
► Immigration laws	05	Banking and financial services	35	▷ Wireless broadband	56
Development & application of tech.	31	Country credit rating	35	Internet users	50
Scientific research legislation	37	Venture capital	50	Internet bandwidth speed	20
Intellectual property rights	30	Investment in Telecommunications	26	▷ High-tech exports (%)	52
AI policies passed into law	15	AI private investment	30	Secure internet servers	32

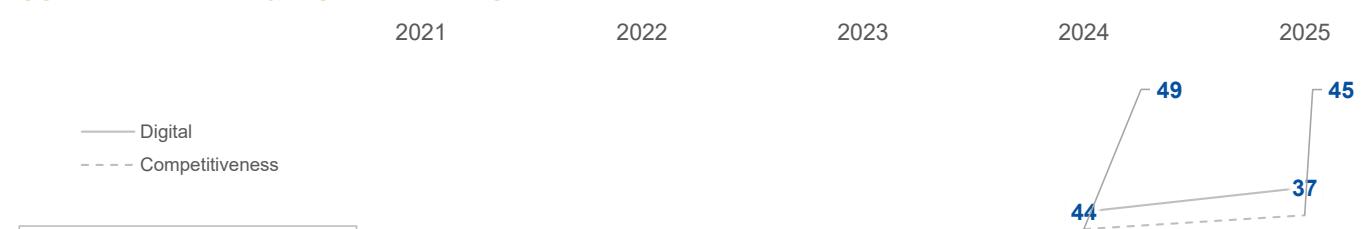
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	30	35	26	24	29
Business agility	58	60	58	61	59
IT integration	30	25	25	28	26

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	52	Opportunities and threats	46	E-Government	41
Internet retailing	32	World robots distribution	30	Public-private partnerships	34
Tablet possession	25	► Agility of companies	58	Cyber security	42
Smartphone possession	27	► Use of big data and analytics	55	Software piracy	27
Attitudes toward globalization	37	Knowledge transfer	47	Government cyber security capacity	17
► Flexibility and adaptability	11	Entrepreneurial fear of failure	43	► Privacy protection by law exists	02

PUERTO RICO

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	-	-	-	44	37
Knowledge	-	-	-	52	51
Technology	-	-	-	38	19
Future readiness	-	-	-	44	35

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

THE AMERICAS (10 economies)

POPULATIONS < 20 MILLION (37 economies)

PUERTO RICO

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

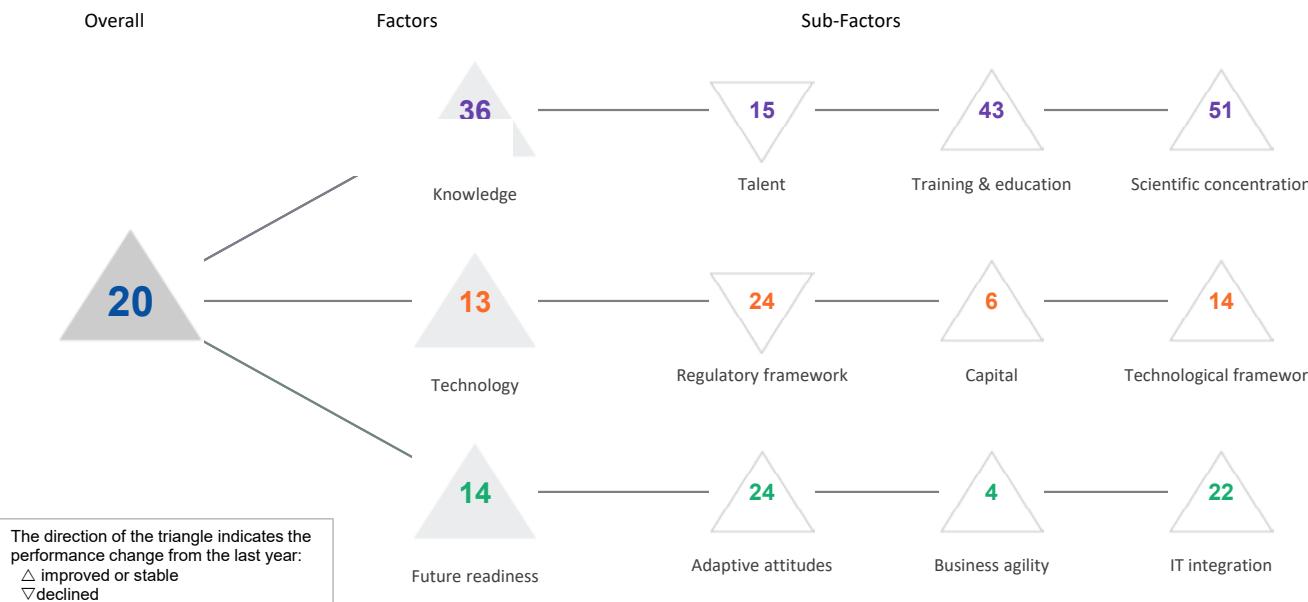
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	-	-	-	48	38
Training & education	-	-	-	50	60
Scientific concentration	-	-	-	57	50
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	34	Total expenditure on R&D (%)	55
International experience	23	▷ Total public expenditure on education	61	► Total R&D personnel per capita	01
▷ Management of cities	58	Higher education achievement	54	▷ R&D productivity by publication	57
Digital/Technological skills	32	Pupil-teacher ratio (tertiary education)	23	High-tech patent grants	-
Foreign highly skilled personnel	53	Graduates in Sciences	43	AI-related patent publications	-
Net flow of international students	-	Women with degrees	-	Robots in Education and R&D	53
Female researchers	-	▷ Computer science education index	60	AI articles	57
Scientific and technical employment	-				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	-	-	-	42	39
Capital	-	-	-	48	13
Technological framework	-	-	-	22	11
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	-	IT & media stock market capitalization	-	Communications technology	43
Enforcing contracts	-	Funding for technological development	33	▷ Mobile broadband subscribers	09
▷ Immigration laws	68	Banking and financial services	48	Wireless broadband	33
Development & application of tech.	26	Country credit rating	-	Internet users	42
Scientific research legislation	40	Venture capital	36	Internet bandwidth speed	26
Intellectual property rights	26	▷ Investment in Telecommunications	02	▷ High-tech exports (%)	01
AI policies passed into law	-	AI private investment	-	Secure internet servers	56

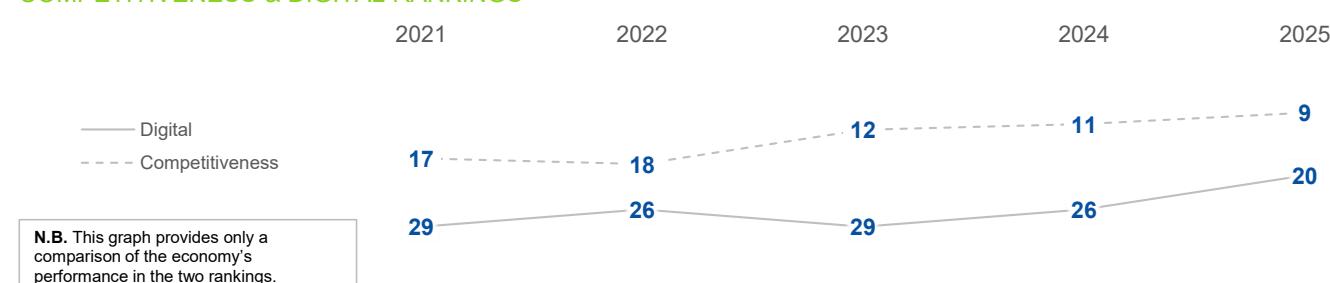
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	-	-	-	49	31
Business agility	-	-	-	44	39
IT integration	-	-	-	37	36

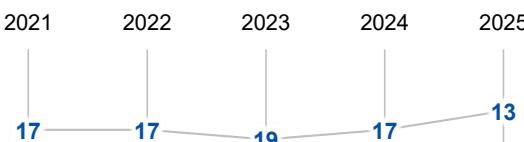
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	-	Opportunities and threats	39	E-Government	-
Internet retailing	-	World robots distribution	55	▷ Public-private partnerships	21
Tablet possession	-	Agility of companies	35	Cyber security	29
Smartphone possession	-	Use of big data and analytics	23	Software piracy	29
Attitudes toward globalization	41	Knowledge transfer	35	Government cyber security capacity	-
Flexibility and adaptability	34	Entrepreneurial fear of failure	28	Privacy protection by law exists	-

QATAR

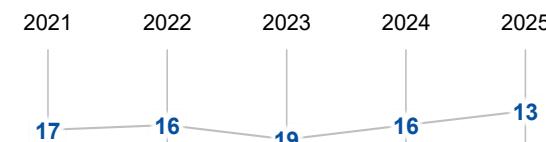
DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	29	26	29	26	20
Knowledge	44	38	38	36	36
Technology	19	17	16	19	13
Future readiness	23	23	26	21	14

COMPETITIVENESS & DIGITAL RANKINGS



PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

QATAR

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	19	11	10	06	15
Training & education	54	45	51	55	43
Scientific concentration	59	59	60	54	51

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	45	Employee training	10	Total expenditure on R&D (%)	46
International experience	03	▷ Total public expenditure on education	65	Total R&D personnel per capita	48
Management of cities	02	Higher education achievement	52	R&D productivity by publication	52
Digital/Technological skills	04	Pupil-teacher ratio (tertiary education)	35	High-tech patent grants	23
Foreign highly skilled personnel	05	Graduates in Sciences	46	AI-related patent publications	41
Net flow of international students	11	Women with degrees	09	Robots in Education and R&D	51
Female researchers	44	Computer science education index	46	AI articles	15
Scientific and technical employment	52				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	27	27	23	23	24
Capital	24	21	22	16	06
Technological framework	16	15	18	24	14
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	47	IT & media stock market capitalization	33	Communications technology	07
Enforcing contracts	58	▷ Funding for technological development	01	Mobile broadband subscribers	02
Immigration laws	08	▷ Banking and financial services	01	Wireless broadband	11
Development & application of tech.	02	Country credit rating	16	Internet users	06
Scientific research legislation	02	Venture capital	02	Internet bandwidth speed	24
Intellectual property rights	10	▷ Investment in Telecommunications	64	▷ High-tech exports (%)	61
AI policies passed into law	60	AI private investment	-	Secure internet servers	57

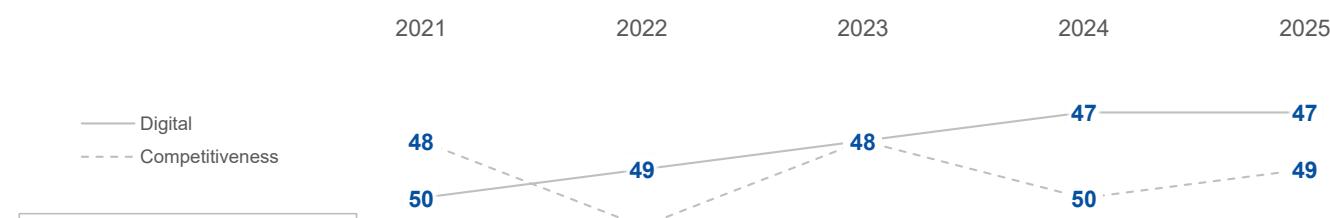
FUTURE READINESS

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	26	29	33	28	24
Business agility	17	14	11	18	04
IT integration	28	28	27	27	22

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	61	Opportunities and threats	04	E-Government	45
Internet retailing	51	World robots distribution	54	Public-private partnerships	02
Tablet possession	04	Agility of companies	07	▷ Cyber security	02
Smartphone possession	05	▷ Use of big data and analytics	01	Software piracy	38
Attitudes toward globalization	07	Knowledge transfer	02	Government cyber security capacity	12
Flexibility and adaptability	05	Entrepreneurial fear of failure	15	▷ Privacy protection by law exists	63

ROMANIA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	50	49	48	47	47
Knowledge	52	49	49	51	48
Technology	47	48	49	50	44
Future readiness	49	51	47	51	48

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

ROMANIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	50	51	50	45	41
Training & education	59	55	56	57	54
Scientific concentration	43	44	47	48	48

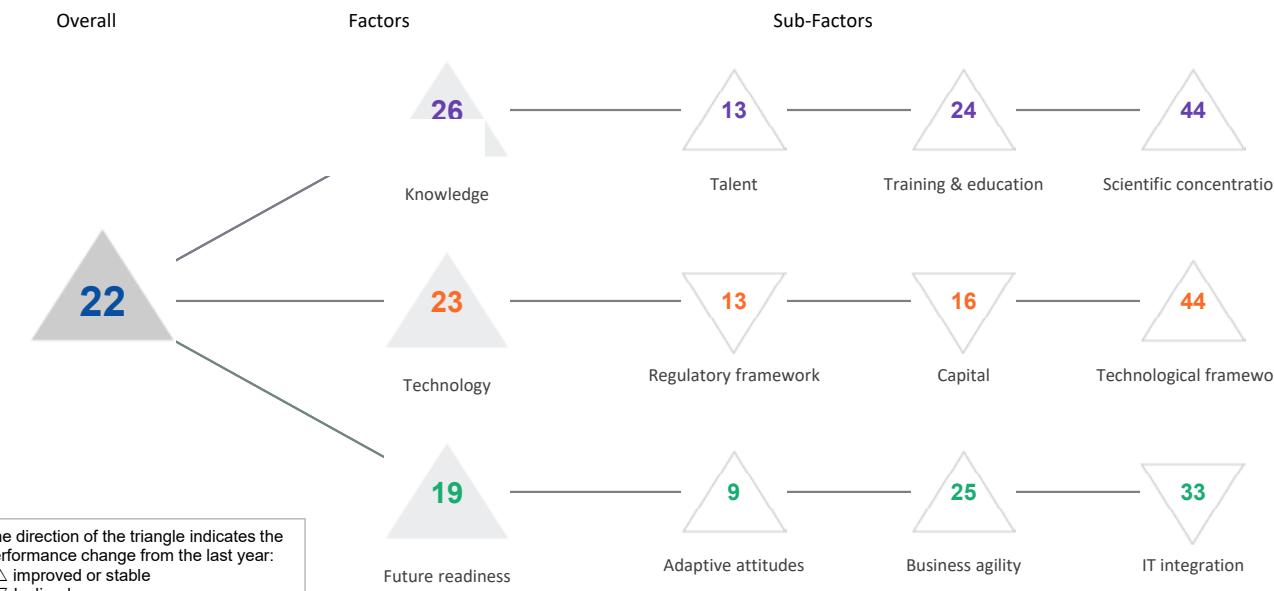
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	40	Employee training	36	Total expenditure on R&D (%)	52
International experience	40	▷ Total public expenditure on education	54	Total R&D personnel per capita	46
Management of cities	44	▷ Higher education achievement	58	R&D productivity by publication	25
Digital/Technological skills	20	Pupil-teacher ratio (tertiary education)	49	High-tech patent grants	34
Foreign highly skilled personnel	50	► Graduates in Sciences	14	AI-related patent publications	35
Net flow of international students	38	Women with degrees	53	Robots in Education and R&D	36
► Female researchers	17	Computer science education index	52	AI articles	45
Scientific and technical employment	50				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	40	39	39	47	33
Capital	61	61	59	64	61
Technological framework	40	41	40	41	38

Sub-Factors	Rank	Capital	Rank	Technological framework	Rank
Starting a business	39	IT & media stock market capitalization	53	Communications technology	26
► Enforcing contracts	18	Funding for technological development	38	Mobile broadband subscribers	51
Immigration laws	24	Banking and financial services	40	Wireless broadband	42
Development & application of tech.	42	Country credit rating	54	Internet users	40
Scientific research legislation	51	Venture capital	44	► Internet bandwidth speed	07
Intellectual property rights	50	▷ Investment in Telecommunications	66	High-tech exports (%)	37
AI policies passed into law	27	AI private investment	31	Secure internet servers	34

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	42	46	48	44	39
Business agility	57	59	45	56	54
IT integration	50	42	42	48	49

Sub-Factors	Rank	Business agility	Rank	IT integration	Rank
E-Participation	46	Opportunities and threats	53	▷ E-Government	57
Internet retailing	42	World robots distribution	34	Public-private partnerships	41
Tablet possession	28	Agility of companies	45	Cyber security	31
Smartphone possession	37	► Use of big data and analytics	14	Software piracy	53
Attitudes toward globalization	52	Knowledge transfer	38	▷ Government cyber security capacity	54
Flexibility and adaptability	39	Entrepreneurial fear of failure	50	Privacy protection by law exists	38

SAUDI ARABIA

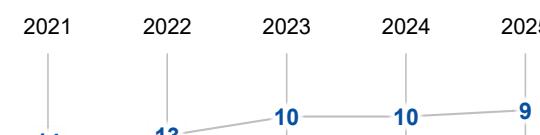
DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	36	35	30	27	22
Knowledge	50	37	35	27	26
Technology	24	26	17	27	23
Future readiness	32	37	30	28	19

COMPETITIVENESS & DIGITAL RANKINGS



PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS > 20 MILLION (32 economies)

SAUDI ARABIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

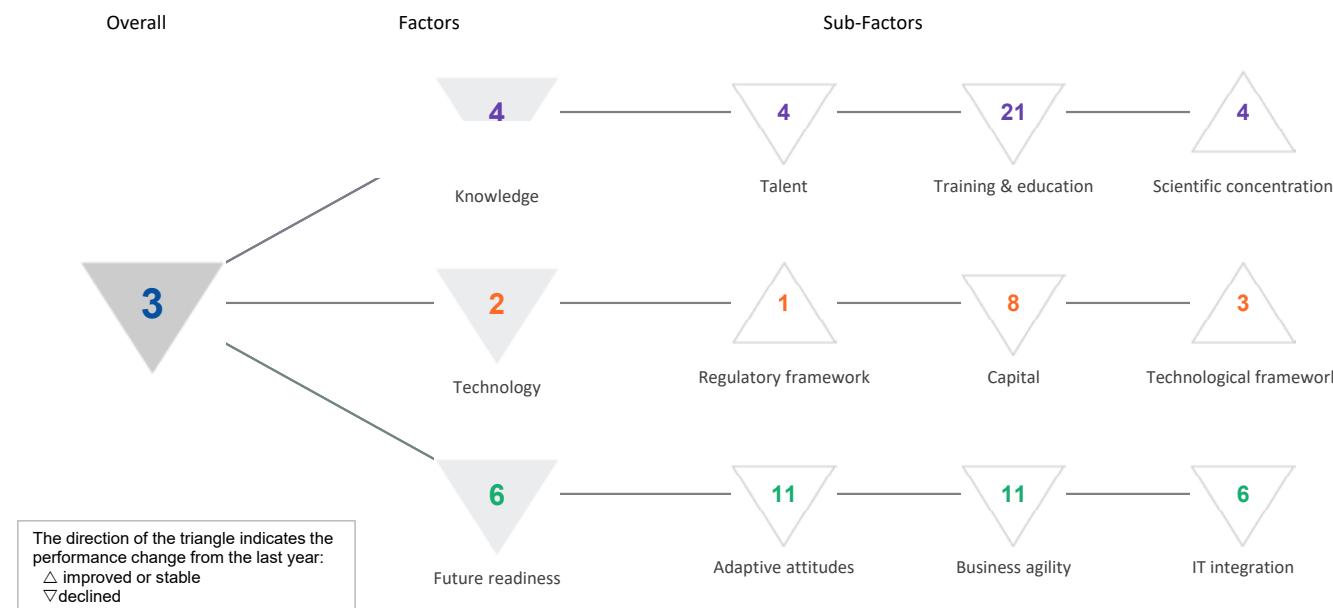
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	32	28	19	18	13
Training & education	34	24	30	28	24
Scientific concentration	64	58	55	46	44
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
▷ Educational assessment PISA - Math	51	Employee training	13	Total expenditure on R&D (%)	51
International experience	05	Total public expenditure on education	17	Total R&D personnel per capita	49
Management of cities	15	Higher education achievement	31	R&D productivity by publication	10
Digital/Technological skills	10	Pupil-teacher ratio (tertiary education)	46	High-tech patent grants	27
Foreign highly skilled personnel	06	Graduates in Sciences	17	AI-related patent publications	30
Net flow of international students	35	Women with degrees	34	▷ Robots in Education and R&D	53
Female researchers	18	Computer science education index	12	AI articles	20
Scientific and technical employment	-				

TECHNOLOGY

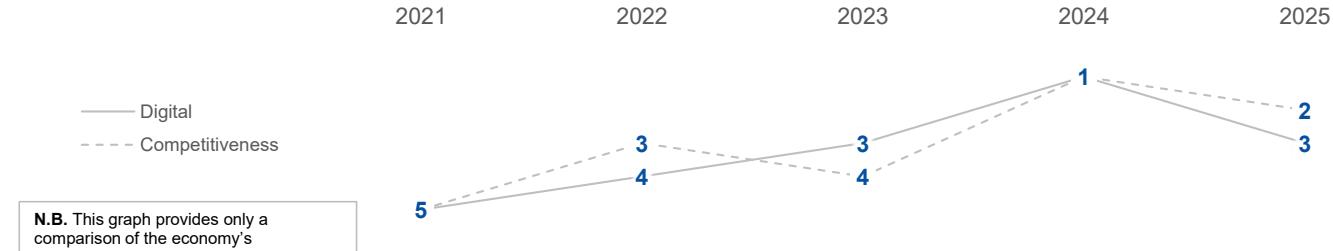
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	30	25	14	12	13
Capital	15	22	09	15	16
Technological framework	35	34	36	51	44
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	21	IT & media stock market capitalization	49	Communications technology	17
Enforcing contracts	36	▷ Funding for technological development	02	Mobile broadband subscribers	44
Immigration laws	10	Banking and financial services	12	Wireless broadband	20
Development & application of tech.	01	Country credit rating	25	▷ Internet users	01
Scientific research legislation	13	Venture capital	03	Internet bandwidth speed	50
Intellectual property rights	13	Investment in Telecommunications	43	▷ High-tech exports (%)	65
AI policies passed into law	38	AI private investment	39	▷ Secure internet servers	59

FUTURE READINESS

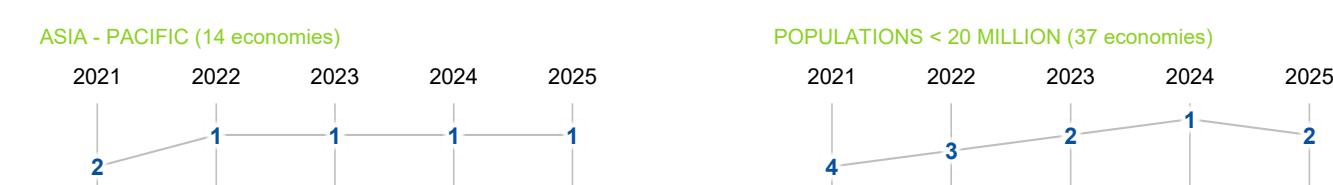

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	46	33	32	20	09
Business agility	35	32	25	30	25
IT integration	24	33	29	32	33

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	06	Opportunities and threats	13	E-Government	06
Internet retailing	46	World robots distribution	50	▷ Public-private partnerships	03
Tablet possession	08	Agility of companies	11	▷ Cyber security	01
Smartphone possession	05	Use of big data and analytics	15	Software piracy	38
Attitudes toward globalization	15	Knowledge transfer	17	Government cyber security capacity	20
Flexibility and adaptability	07	Entrepreneurial fear of failure	47	▷ Privacy protection by law exists	68

SINGAPORE


DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)



OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	05	04	03	01	03
Knowledge	04	05	03	02	04
Technology	03	01	01	01	02
Future readiness	11	10	10	01	06

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

SINGAPORE

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

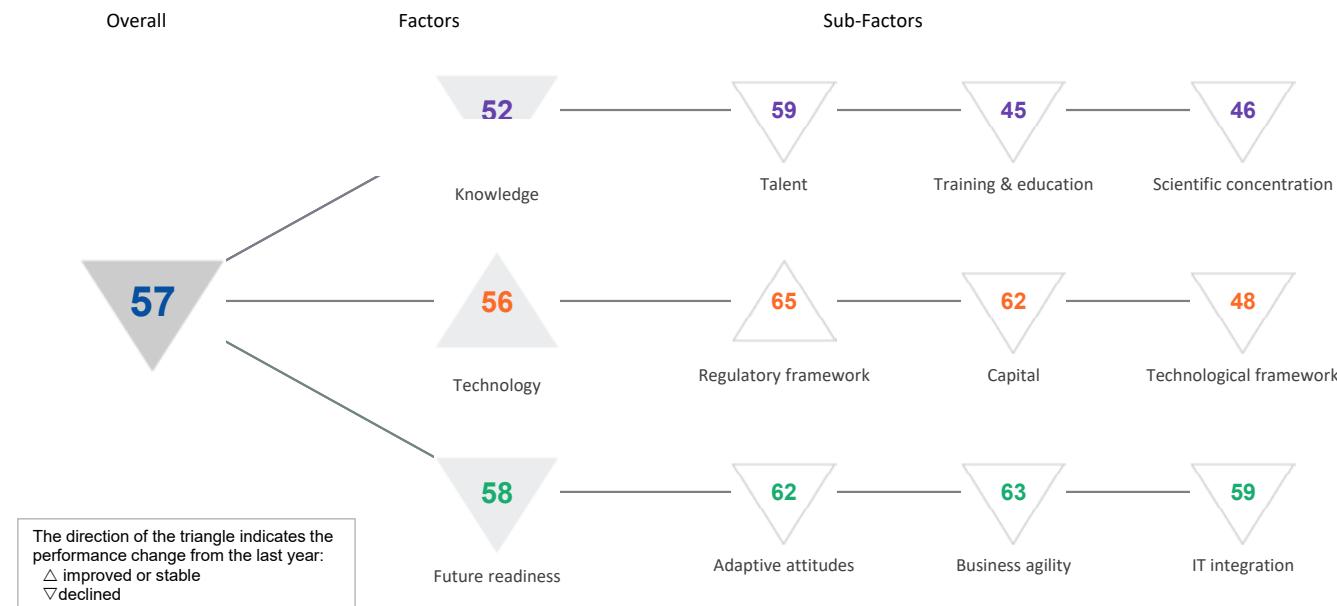
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	02	03	04	01	04
Training & education	13	09	09	14	21
Scientific concentration	11	11	11	09	04
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	02	Employee training	19	Total expenditure on R&D (%)	22
International experience	13	▷ Total public expenditure on education	63	Total R&D personnel per capita	12
Management of cities	01	Higher education achievement	02	R&D productivity by publication	39
Digital/Technological skills	15	Pupil-teacher ratio (tertiary education)	26	► High-tech patent grants	01
Foreign highly skilled personnel	03	Graduates in Sciences	04	AI-related patent publications	11
Net flow of international students	04	Women with degrees	42	Robots in Education and R&D	28
Female researchers	46	Computer science education index	39	AI articles	03
Scientific and technical employment	31				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	05	01	01	01	01
Capital	14	11	15	04	08
Technological framework	02	02	02	04	03
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	03	IT & media stock market capitalization	29	Communications technology	14
Enforcing contracts	01	Funding for technological development	03	Mobile broadband subscribers	40
Immigration laws	52	Banking and financial services	02	Wireless broadband	22
Development & application of tech.	05	► Country credit rating	01	Internet users	25
Scientific research legislation	03	Venture capital	05	Internet bandwidth speed	02
Intellectual property rights	07	▷ Investment in Telecommunications	61	High-tech exports (%)	06
AI policies passed into law	31	AI private investment	15	► Secure internet servers	02

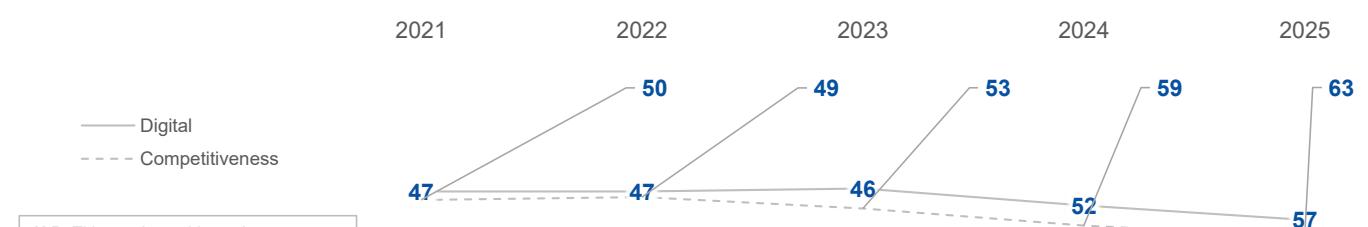
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	11	17	13	01	11
Business agility	12	09	14	01	11
IT integration	07	08	11	01	06

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	06	Opportunities and threats	09	E-Government	03
Internet retailing	28	World robots distribution	13	Public-private partnerships	07
Tablet possession	13	Agility of companies	09	Cyber security	08
Smartphone possession	03	Use of big data and analytics	30	Software piracy	17
Attitudes toward globalization	08	Knowledge transfer	11	Government cyber security capacity	03
Flexibility and adaptability	26	Entrepreneurial fear of failure	-	▷ Privacy protection by law exists	50

SLOVAK REPUBLIC

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	47	47	46	52	57
Knowledge	46	44	42	44	52
Technology	45	53	54	59	56
Future readiness	46	45	48	57	58

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

SLOVAK REPUBLIC

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

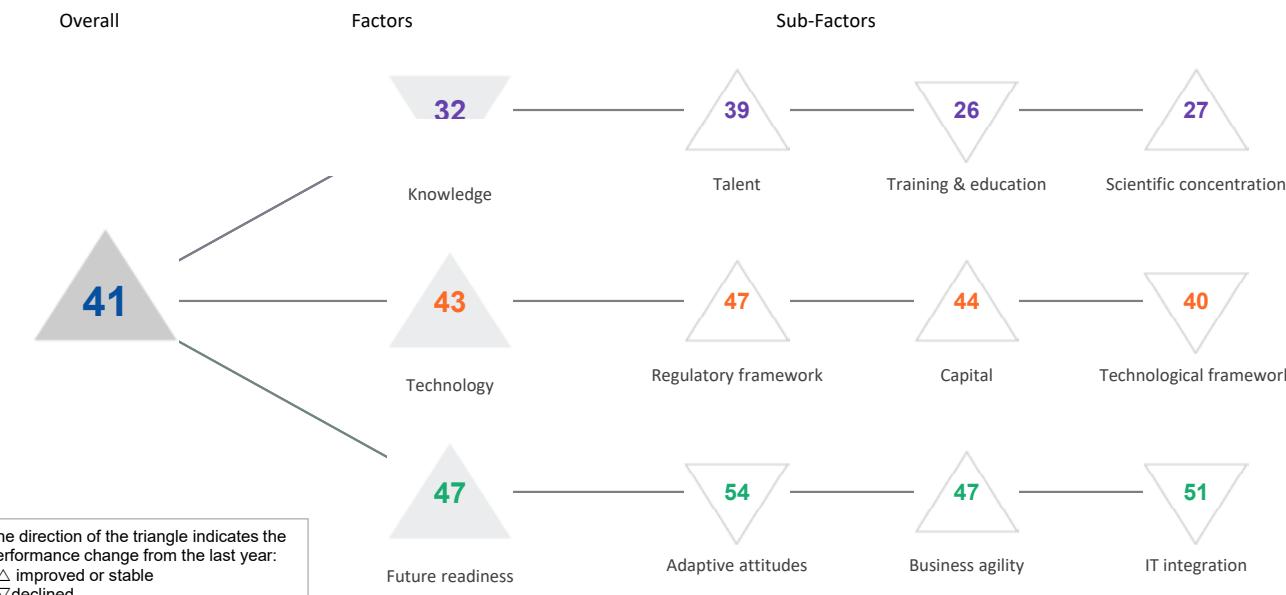
Sub-Factors	2021	2022	2023	2024	2025
Talent	52	44	48	52	59
Training & education	49	43	40	42	45
Scientific concentration	40	39	39	43	46

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	34	Employee training	63	Total expenditure on R&D (%)	38
International experience	55	Total public expenditure on education	25	Total R&D personnel per capita	36
Management of cities	49	Higher education achievement	42	R&D productivity by publication	48
Digital/Technological skills	37	► Pupil-teacher ratio (tertiary education)	16	High-tech patent grants	25
▷ Foreign highly skilled personnel	68	Graduates in Sciences	44	AI-related patent publications	52
Net flow of international students	58	Women with degrees	41	Robots in Education and R&D	33
Female researchers	24	Computer science education index	50	AI articles	37
Scientific and technical employment	46				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	60	58	55	65	65
Capital	42	58	58	61	62
Technological framework	39	40	42	45	48
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	51	IT & media stock market capitalization	58	Communications technology	31
Enforcing contracts	34	Funding for technological development	61	Mobile broadband subscribers	46
▷ Immigration laws	67	Banking and financial services	44	Wireless broadband	46
Development & application of tech.	68	Country credit rating	33	Internet users	43
Scientific research legislation	64	Venture capital	51	Internet bandwidth speed	32
Intellectual property rights	64	Investment in Telecommunications	39	High-tech exports (%)	46
AI policies passed into law	20	AI private investment	48	Secure internet servers	25

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	49	50	52	58	62
Business agility	60	50	51	59	63
IT integration	40	39	36	45	59

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	43	Opportunities and threats	62	E-Government	52
Internet retailing	36	World robots distribution	28	▷ Public-private partnerships	68
▷ Tablet possession	20	Agility of companies	55	Cyber security	67
Smartphone possession	26	Use of big data and analytics	58	Software piracy	25
Attitudes toward globalization	66	Knowledge transfer	66	Government cyber security capacity	62
▷ Flexibility and adaptability	69	► Entrepreneurial fear of failure	16	► Privacy protection by law exists	01

SLOVENIA

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	35	37	37	41	41
Knowledge	30	26	27	28	32
Technology	39	38	45	47	43
Future readiness	40	41	39	48	47


COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

SLOVENIA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

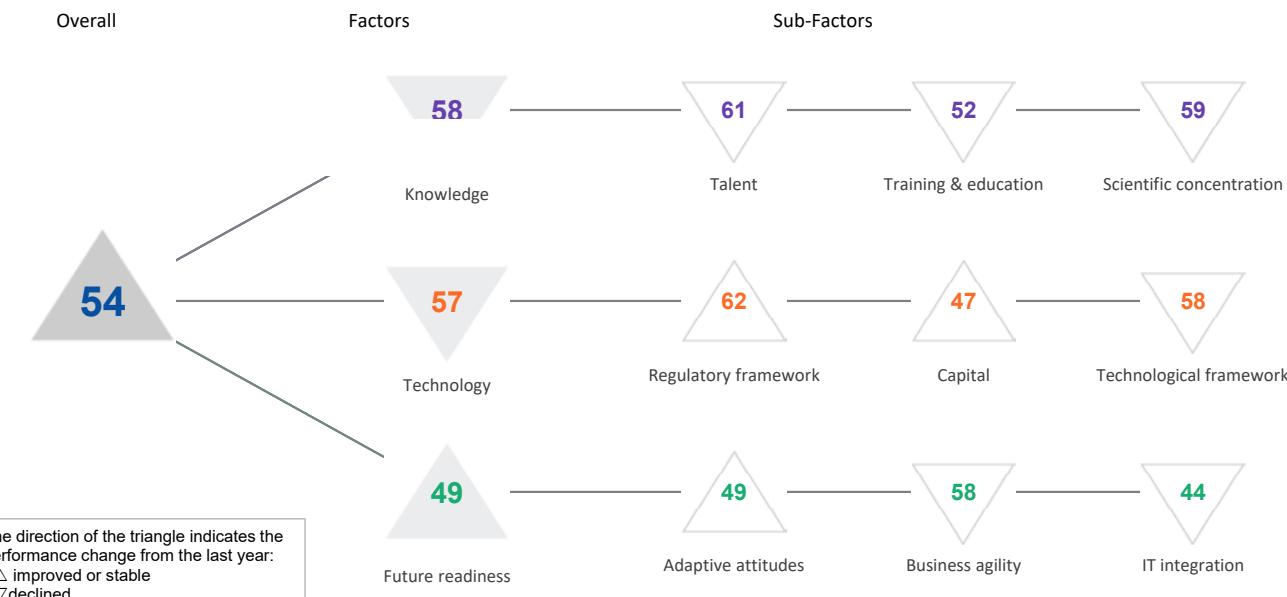
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	37	38	39	42	39
Training & education	23	18	13	19	26
Scientific concentration	31	28	29	27	27
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	19	Employee training	37	Total expenditure on R&D (%)	17
International experience	46	Total public expenditure on education	13	Total R&D personnel per capita	17
Management of cities	37	Higher education achievement	38	R&D productivity by publication	58
Digital/Technological skills	34	► Pupil-teacher ratio (tertiary education)	08	High-tech patent grants	29
▷ Foreign highly skilled personnel	65	► Graduates in Sciences	11	AI-related patent publications	41
Net flow of international students	21	Women with degrees	33	Robots in Education and R&D	35
Female researchers	36	Computer science education index	40	► AI articles	10
Scientific and technical employment	15				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	45	43	48	55	47
Capital	39	38	38	49	44
Technological framework	33	35	41	37	40
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	23	IT & media stock market capitalization	43	Communications technology	37
Enforcing contracts	57	Funding for technological development	45	Mobile broadband subscribers	26
Immigration laws	45	Banking and financial services	45	Wireless broadband	36
Development & application of tech.	61	Country credit rating	31	Internet users	37
Scientific research legislation	46	Venture capital	52	Internet bandwidth speed	42
Intellectual property rights	44	► Investment in Telecommunications	13	High-tech exports (%)	51
► AI policies passed into law	12	AI private investment	56	Secure internet servers	14

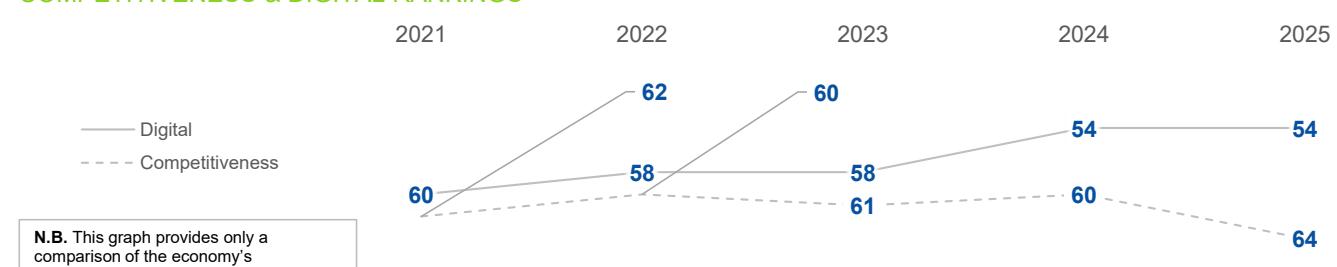
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	41	45	38	50	54
Business agility	40	33	39	48	47
IT integration	35	37	38	46	51

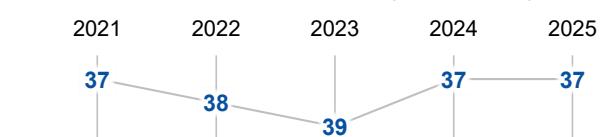
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	32	Opportunities and threats	29	E-Government	29
Internet retailing	35	World robots distribution	32	► Public-private partnerships	61
Tablet possession	16	Agility of companies	33	Cyber security	44
Smartphone possession	38	Use of big data and analytics	45	Software piracy	29
► Attitudes toward globalization	62	Knowledge transfer	56	► Government cyber security capacity	65
Flexibility and adaptability	66	Entrepreneurial fear of failure	27	Privacy protection by law exists	20

SOUTH AFRICA

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	60	58	58	54	54
Knowledge	62	54	58	54	58
Technology	59	58	59	54	57
Future readiness	59	59	56	50	49

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS > 20 MILLION (32 economies)

SOUTH AFRICA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

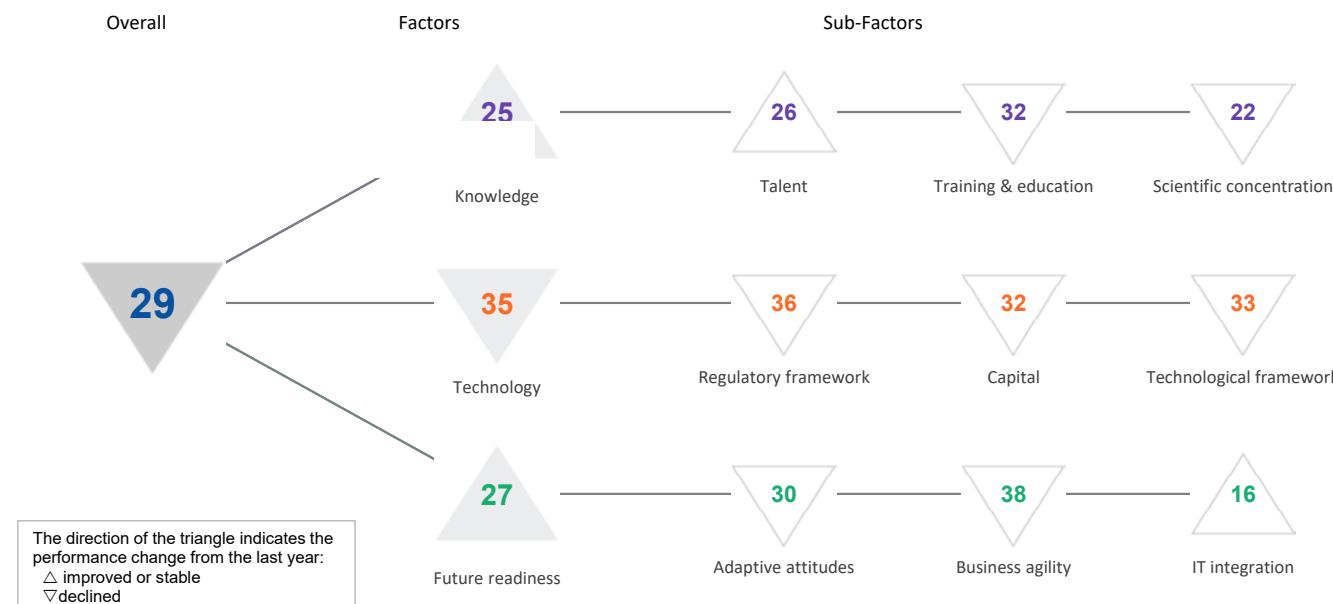
Sub-Factors	2021	2022	2023	2024	2025
Talent	58	57	60	59	61
Training & education	62	50	49	46	52
Scientific concentration	53	53	53	55	59

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	-	Employee training	58	Total expenditure on R&D (%)	48
International experience	56	► Total public expenditure on education	02	Total R&D personnel per capita	54
▷ Management of cities	67	▷ Higher education achievement	62	R&D productivity by publication	21
▷ Digital/Technological skills	67	Pupil-teacher ratio (tertiary education)	40	High-tech patent grants	50
Foreign highly skilled personnel	49	Graduates in Sciences	55	AI-related patent publications	48
Net flow of international students	39	Women with degrees	57	Robots in Education and R&D	47
► Female researchers	14	Computer science education index	41	AI articles	52
Scientific and technical employment	-				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	59	53	56	62	62
Capital	36	51	45	47	47
Technological framework	61	60	61	55	58
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	62	► IT & media stock market capitalization	07	Communications technology	61
Enforcing contracts	54	Funding for technological development	59	Mobile broadband subscribers	50
▷ Immigration laws	66	Banking and financial services	56	Wireless broadband	39
Development & application of tech.	56	Country credit rating	58	Internet users	62
Scientific research legislation	41	Venture capital	61	Internet bandwidth speed	62
Intellectual property rights	46	► Investment in Telecommunications	06	High-tech exports (%)	57
AI policies passed into law	44	AI private investment	42	Secure internet servers	38

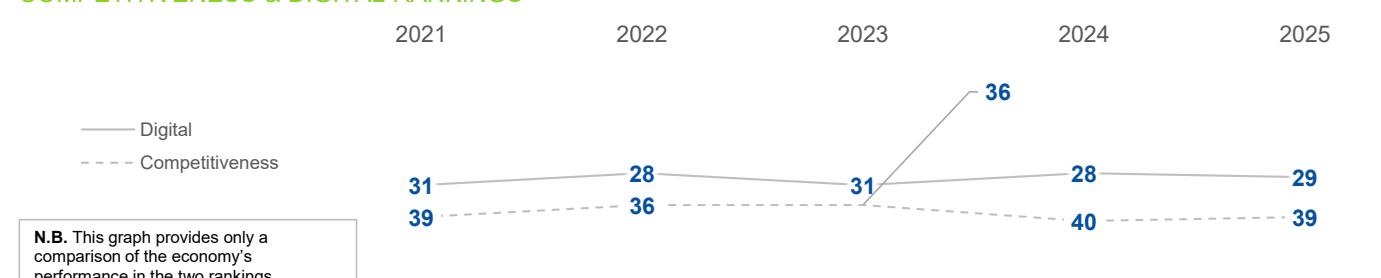
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	59	57	57	55	49
Business agility	59	57	54	52	58
IT integration	55	55	56	40	44

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	24	Opportunities and threats	50	E-Government	35
Internet retailing	57	World robots distribution	33	▷ Public-private partnerships	63
Tablet possession	42	Agility of companies	56	Cyber security	57
Smartphone possession	35	Use of big data and analytics	34	► Software piracy	19
Attitudes toward globalization	49	Knowledge transfer	48	Government cyber security capacity	52
Flexibility and adaptability	58	Entrepreneurial fear of failure	48	Privacy protection by law exists	27

SPAIN

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	31	28	31	28	29
Knowledge	31	27	26	26	25
Technology	33	33	31	31	35
Future readiness	35	27	29	29	27

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

SPAIN

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

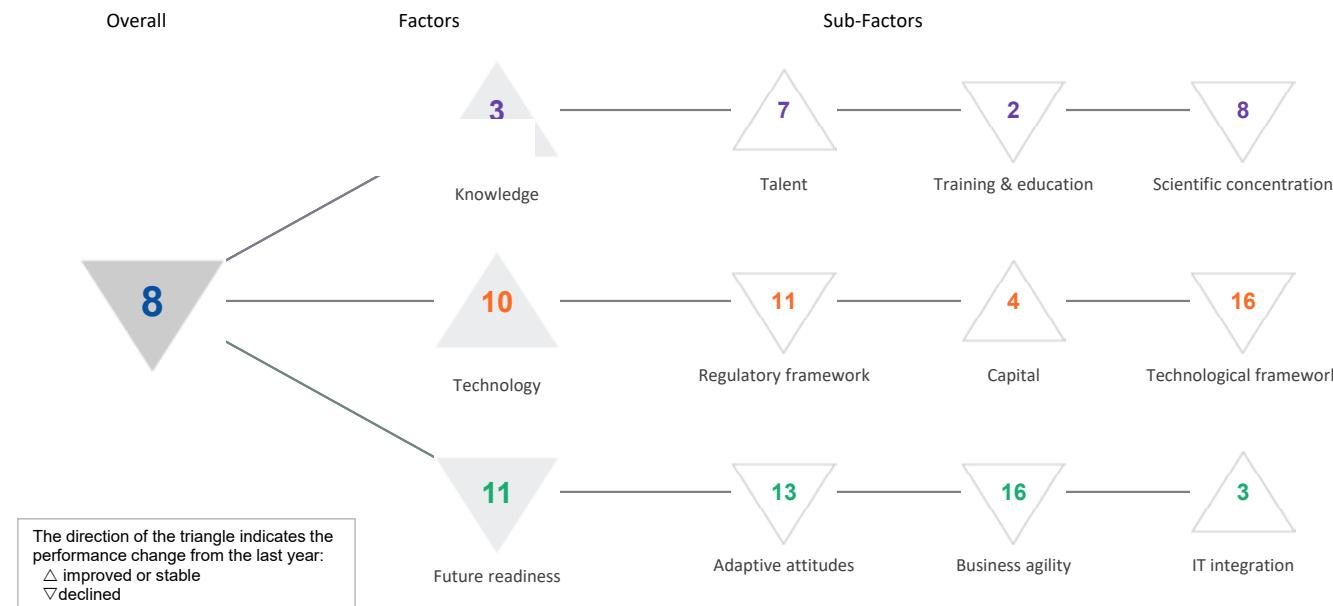
Sub-Factors	2021	2022	2023	2024	2025
Talent	31	31	27	34	26
Training & education	40	35	35	31	32
Scientific concentration	23	20	19	21	22

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	28	Employee training	45	Total expenditure on R&D (%)	27
International experience	32	Total public expenditure on education	44	Total R&D personnel per capita	30
Management of cities	26	Higher education achievement	20	R&D productivity by publication	11
Digital/Technological skills	39	Pupil-teacher ratio (tertiary education)	20	High-tech patent grants	42
Foreign highly skilled personnel	28	Graduates in Sciences	41	AI-related patent publications	20
Net flow of international students	33	Women with degrees	29	► Robots in Education and R&D	07
Female researchers	21	Computer science education index	08	AI articles	25
Scientific and technical employment	23				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	37	35	38	34	36
Capital	34	31	30	30	32
Technological framework	24	28	22	26	33
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	41	IT & media stock market capitalization	20	Communications technology	22
Enforcing contracts	22	Funding for technological development	43	Mobile broadband subscribers	42
Immigration laws	33	Banking and financial services	32	Wireless broadband	37
► Development & application of tech.	48	Country credit rating	39	Internet users	20
► Scientific research legislation	63	Venture capital	32	► Internet bandwidth speed	09
Intellectual property rights	31	Investment in Telecommunications	27	High-tech exports (%)	48
► AI policies passed into law	06	AI private investment	20	Secure internet servers	33

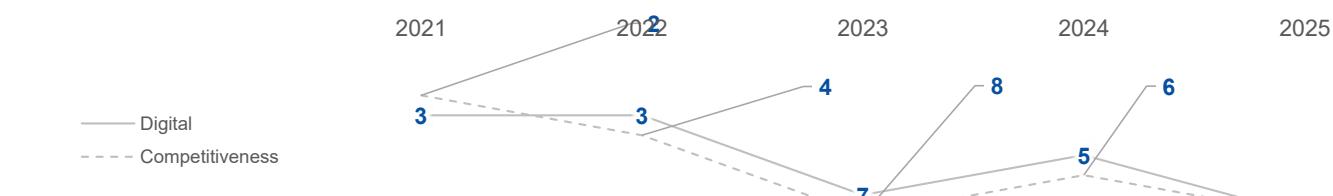
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	33	25	21	26	30
Business agility	49	44	43	33	38
IT integration	29	20	19	22	16

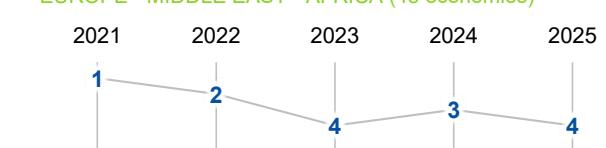
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	28	Opportunities and threats	22	E-Government	17
Internet retailing	29	World robots distribution	10	Public-private partnerships	22
Tablet possession	34	Agility of companies	23	Cyber security	41
Smartphone possession	17	► Use of big data and analytics	52	Software piracy	32
Attitudes toward globalization	33	► Knowledge transfer	58	► Government cyber security capacity	10
► Flexibility and adaptability	51	Entrepreneurial fear of failure	17	Privacy protection by law exists	15

SWEDEN

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	03	03	07	05	08
Knowledge	02	02	05	03	03
Technology	08	05	11	10	10
Future readiness	06	04	08	04	11

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

SWEDEN

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

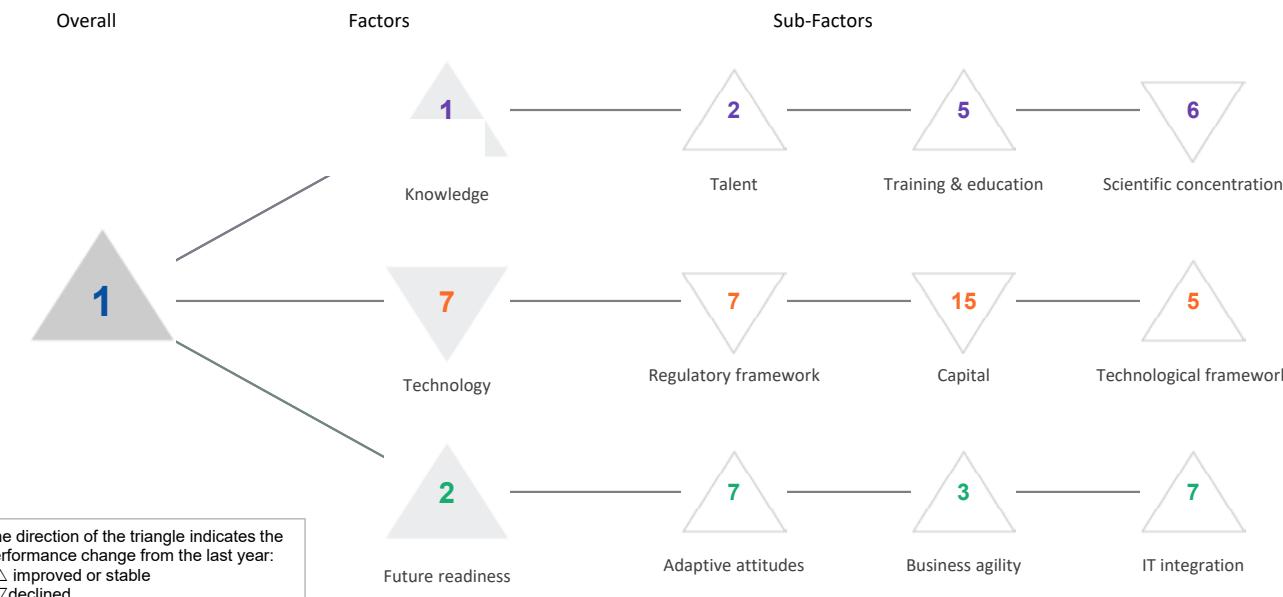
Sub-Factors	2021	2022	2023	2024	2025
Talent	07	06	13	07	07
Training & education	02	04	04	01	02
Scientific concentration	04	02	04	03	08

Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	23	Employee training	04	► Total expenditure on R&D (%)	03
International experience	08	► Total public expenditure on education	03	Total R&D personnel per capita	11
Management of cities	18	Higher education achievement	17	▷ R&D productivity by publication	44
Digital/Technological skills	09	Pupil-teacher ratio (tertiary education)	19	High-tech patent grants	09
Foreign highly skilled personnel	17	Graduates in Sciences	15	AI-related patent publications	10
Net flow of international students	26	Women with degrees	10	Robots in Education and R&D	22
Female researchers	38	Computer science education index	24	AI articles	09
► Scientific and technical employment	01				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	03	02	07	10	11
Capital	05	07	08	08	04
Technological framework	13	09	17	14	16
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	22	IT & media stock market capitalization	26	Communications technology	15
Enforcing contracts	30	Funding for technological development	19	Mobile broadband subscribers	17
▷ Immigration laws	46	Banking and financial services	04	Wireless broadband	32
Development & application of tech.	14	► Country credit rating	01	Internet users	19
Scientific research legislation	08	Venture capital	06	Internet bandwidth speed	17
Intellectual property rights	11	▷ Investment in Telecommunications	53	High-tech exports (%)	27
AI policies passed into law	12	AI private investment	04	Secure internet servers	19

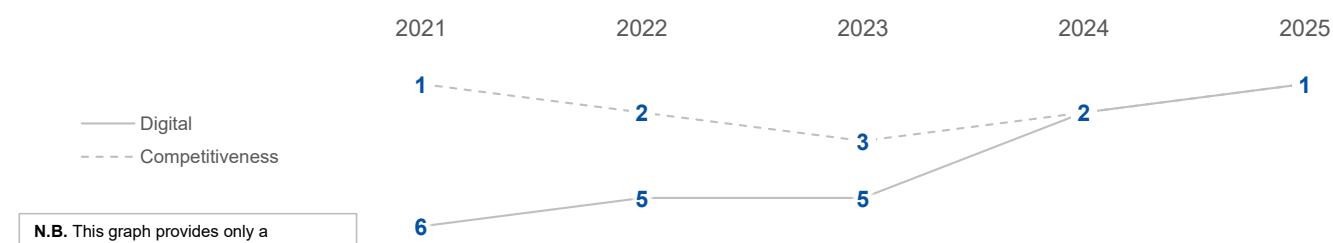
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	05	07	10	08	13
Business agility	13	10	17	09	16
IT integration	05	04	08	05	03

Sub-Factors	Rank	Business agility	Rank	IT integration	Rank
E-Participation	30	▷ Opportunities and threats	41	E-Government	14
Internet retailing	15	World robots distribution	22	Public-private partnerships	04
► Tablet possession	02	Agility of companies	16	Cyber security	27
Smartphone possession	44	Use of big data and analytics	08	Software piracy	06
Attitudes toward globalization	04	Knowledge transfer	14	Government cyber security capacity	22
Flexibility and adaptability	30	Entrepreneurial fear of failure	23	Privacy protection by law exists	19

SWITZERLAND

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	06	05	05	02	01
Knowledge	01	01	01	01	01
Technology	11	12	10	04	07
Future readiness	03	07	06	05	02

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

SWITZERLAND

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

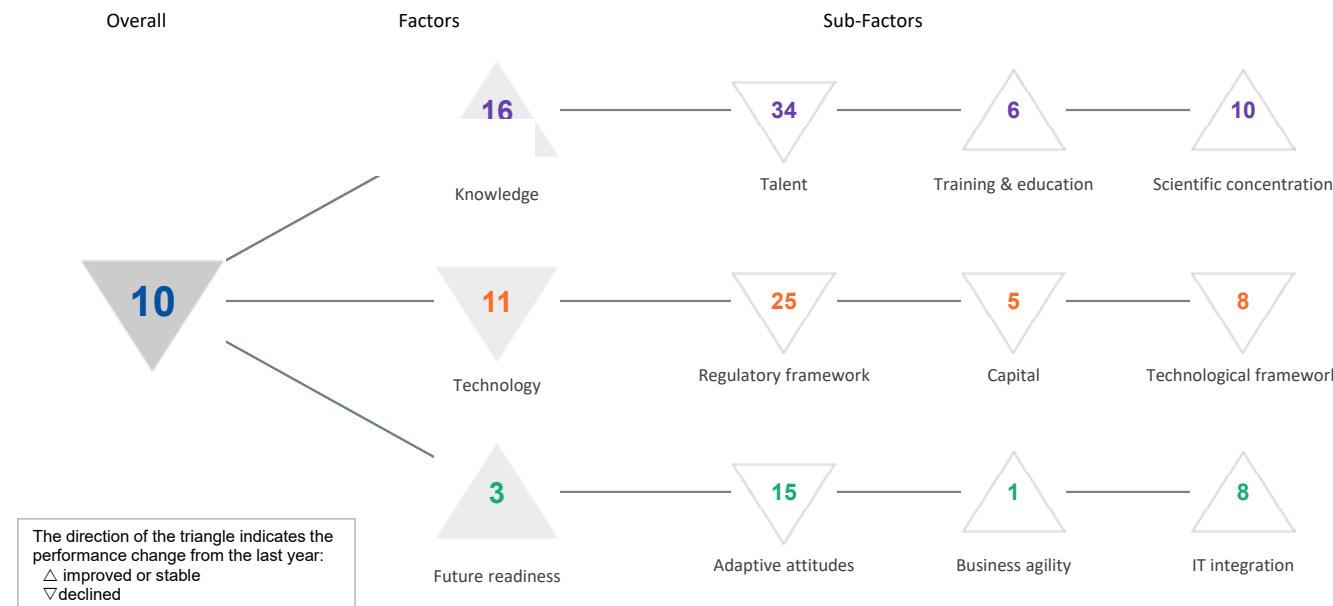
▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	03	02	02	03	02
Training & education	07	08	07	08	05
Scientific concentration	08	08	10	02	06
Talent	Rank				
Educational assessment PISA - Math	08				
International experience	02				
Management of cities	06				
Digital/Technological skills	13				
► Foreign highly skilled personnel	01				
Net flow of international students	09				
Female researchers	30				
Scientific and technical employment	02				
Training & education	Rank				
Employee training		01			
Total public expenditure on education		10			
Higher education achievement		22			
Pupil-teacher ratio (tertiary education)		06			
Graduates in Sciences		24			
Women with degrees		31			
Computer science education index		18			
Scientific concentration	Rank				
Total expenditure on R&D (%)		07			
Total R&D personnel per capita		10			
▷ R&D productivity by publication		35			
High-tech patent grants		19			
AI-related patent publications		09			
Robots in Education and R&D		16			
► AI articles		01			

TECHNOLOGY

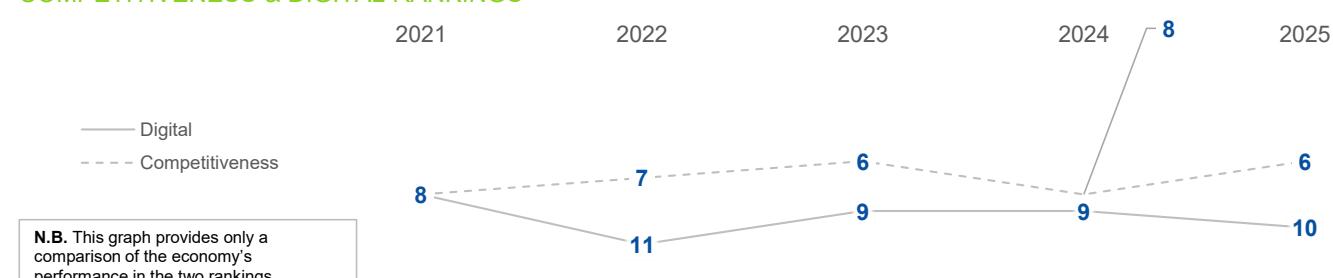
Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	09	08	04	02	07
Capital	12	12	11	11	15
Technological framework	11	11	12	07	05
Regulatory framework	Rank				
Starting a business	36				
► Enforcing contracts	40				
Immigration laws	12				
Development & application of tech.	04				
► Scientific research legislation	01				
► Intellectual property rights	01				
► AI policies passed into law	39				
Capital	Rank				
IT & media stock market capitalization	48				
Funding for technological development	07				
Banking and financial services	05				
Country credit rating	01				
Venture capital	16				
Investment in Telecommunications	31				
AI private investment	18				
Technological framework	Rank				
Communications technology	03				
Mobile broadband subscribers	14				
► Wireless broadband	55				
Internet users	12				
Internet bandwidth speed	05				
High-tech exports (%)	12				
Secure internet servers	05				


FUTURE READINESS

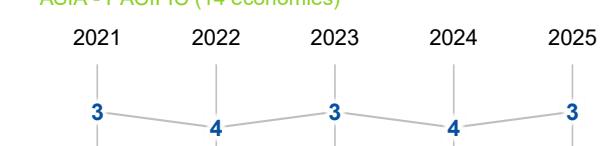
Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	10	12	16	15	07
Business agility	04	07	07	07	03
IT integration	04	06	06	07	07
Adaptive attitudes	Rank				
E-Participation	27				
Internet retailing	04				
Tablet possession	07				
Smartphone possession	17				
Attitudes toward globalization	18				
Flexibility and adaptability	23				
Business agility	Rank				
Opportunities and threats	08				
World robots distribution	24				
Agility of companies	08				
Use of big data and analytics	18				
► Knowledge transfer	01				
Entrepreneurial fear of failure	08				
IT integration	Rank				
E-Government	24				
Public-private partnerships	06				
Cyber security	09				
Software piracy	10				
Government cyber security capacity	32				
Privacy protection by law exists	28				

TAIWAN (CHINESE TAIPEI)

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years


	2021	2022	2023	2024	2025
OVERALL	08	11	09	09	10
Knowledge	16	18	18	19	16
Technology	02	06	03	07	11
Future readiness	07	08	07	06	03

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

ASIA - PACIFIC (14 economies)

POPULATIONS > 20 MILLION (32 economies)

TAIWAN (CHINESE TAIPEI)

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	17	21	22	20	34
Training & education	12	11	10	07	06
Scientific concentration	19	21	21	22	10

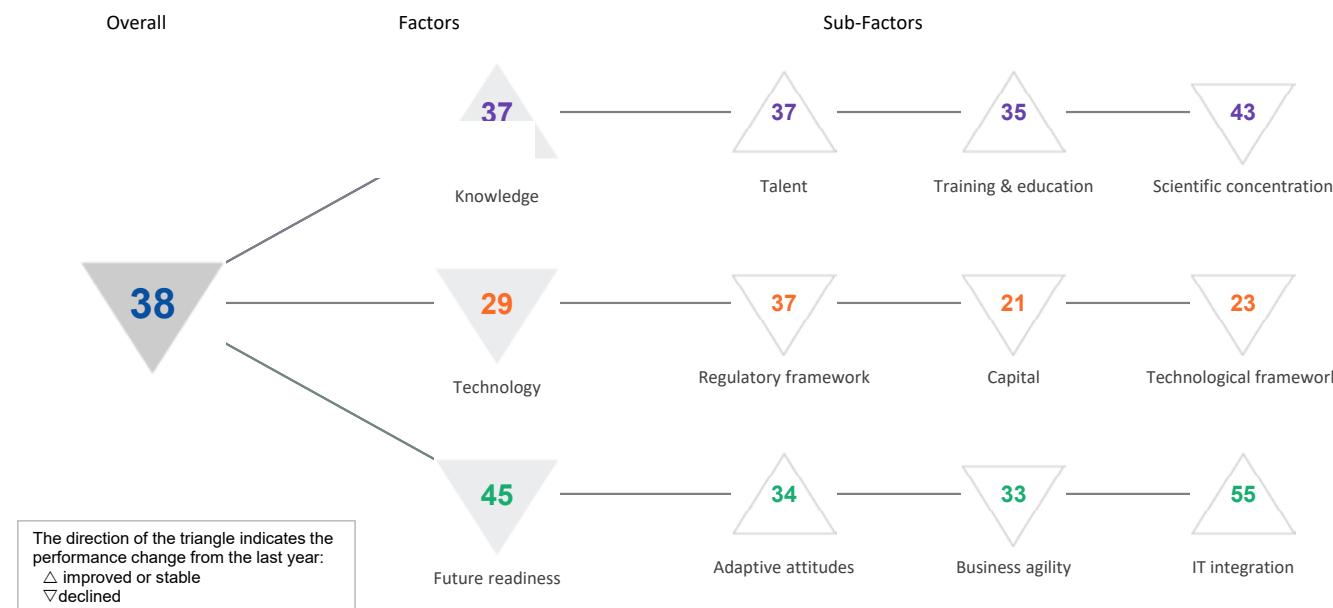
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	03	Employee training	06	► Total expenditure on R&D (%)	02
International experience	38	▷ Total public expenditure on education	53	► Total R&D personnel per capita	02
Management of cities	10	► Higher education achievement	03	R&D productivity by publication	38
Digital/Technological skills	45	▷ Pupil-teacher ratio (tertiary education)	51	High-tech patent grants	15
Foreign highly skilled personnel	42	Graduates in Sciences	08	AI-related patent publications	-
Net flow of international students	16	Women with degrees	05	Robots in Education and R&D	20
▷ Female researchers	56	Computer science education index	16	AI articles	29
▷ Scientific and technical employment	45				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	16	14	16	24	25
Capital	02	09	05	03	05
Technological framework	04	04	05	03	08

Sub-Factors	Rank	Capital	Rank	Technological framework	Rank
Starting a business	10	► IT & media stock market capitalization	01	Communications technology	20
Enforcing contracts	11	Funding for technological development	11	Mobile broadband subscribers	21
Immigration laws	39	Banking and financial services	07	Wireless broadband	06
Development & application of tech.	19	Country credit rating	15	Internet users	34
Scientific research legislation	11	Venture capital	09	Internet bandwidth speed	14
Intellectual property rights	14	Investment in Telecommunications	36	High-tech exports (%)	04
▷ AI policies passed into law	68	AI private investment	32	Secure internet servers	36

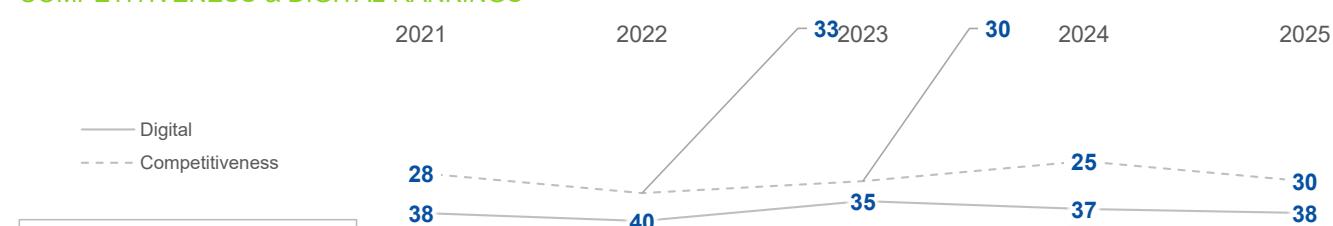
FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	13	13	17	13	15
Business agility	02	05	01	04	01
IT integration	15	13	14	14	08

Sub-Factors	Rank	Business agility	Rank	IT integration	Rank
E-Participation	-	Opportunities and threats	03	E-Government	-
Internet retailing	26	World robots distribution	07	Public-private partnerships	11
Tablet possession	29	► Agility of companies	02	Cyber security	16
Smartphone possession	14	Use of big data and analytics	03	Software piracy	24
Attitudes toward globalization	06	Knowledge transfer	08	Government cyber security capacity	18
Flexibility and adaptability	09	Entrepreneurial fear of failure	14	Privacy protection by law exists	25

THAILAND

DIGITAL TRENDS - OVERALL


OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	38	40	35	37	38
Knowledge	42	45	41	40	37
Technology	22	20	15	23	29
Future readiness	44	49	42	41	45

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

ASIA - PACIFIC (14 economies)

POPULATIONS > 20 MILLION (32 economies)

THAILAND

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

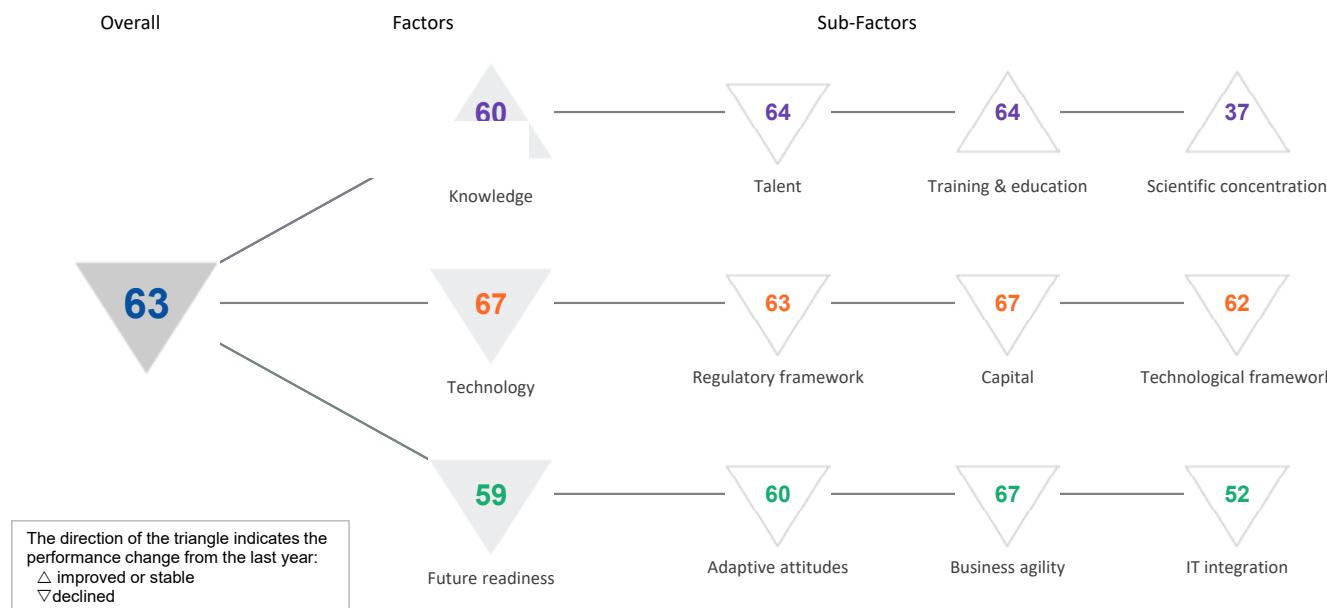
▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	39	37	35	39	37
Training & education	56	57	52	40	35
Scientific concentration	36	36	38	42	43

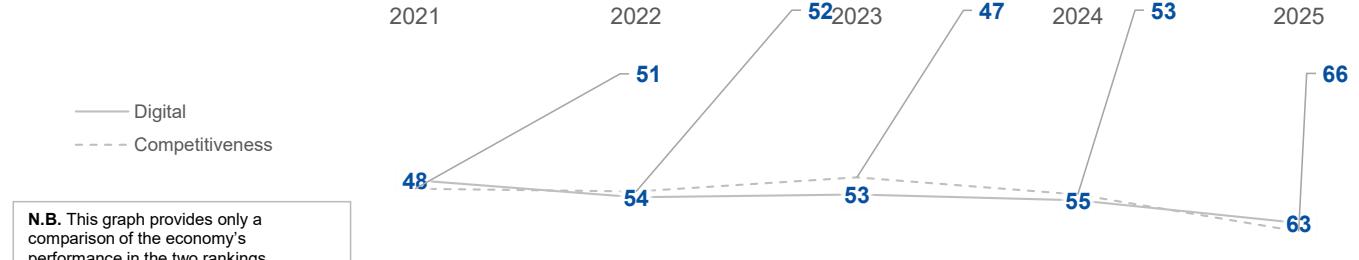
Sub-Factors	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	49	Employee training	23	Total expenditure on R&D (%)	41
International experience	14	Total public expenditure on education	32	Total R&D personnel per capita	43
Management of cities	23	Higher education achievement	47	R&D productivity by publication	27
Digital/Technological skills	41	Pupil-teacher ratio (tertiary education)	-	High-tech patent grants	37
Foreign highly skilled personnel	25	► Graduates in Sciences	07	AI-related patent publications	41
Net flow of international students	44	Women with degrees	48	Robots in Education and R&D	12
► Female researchers	12	Computer science education index	44	AI articles	53
▷ Scientific and technical employment	57				

TECHNOLOGY


Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	29	34	31	36	37
Capital	19	20	12	13	21
Technological framework	22	18	15	21	23
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	26	► IT & media stock market capitalization	09	Communications technology	16
Enforcing contracts	28	Funding for technological development	30	Mobile broadband subscribers	24
Immigration laws	28	Banking and financial services	25	Wireless broadband	27
Development & application of tech.	41	Country credit rating	43	Internet users	38
Scientific research legislation	42	Venture capital	34	Internet bandwidth speed	13
Intellectual property rights	41	► Investment in Telecommunications	08	High-tech exports (%)	15
AI policies passed into law	40	AI private investment	53	Secure internet servers	48

FUTURE READINESS

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	53	52	42	36	34
Business agility	34	41	34	25	33
IT integration	43	50	49	55	55


Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	37	Opportunities and threats	35	E-Government	44
Internet retailing	34	► World robots distribution	11	Public-private partnerships	18
▷ Tablet possession	54	Agility of companies	37	Cyber security	39
Smartphone possession	46	Use of big data and analytics	33	► Software piracy	58
Attitudes toward globalization	13	Knowledge transfer	33	► Government cyber security capacity	55
Flexibility and adaptability	22	Entrepreneurial fear of failure	35	► Privacy protection by law exists	58

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	48	54	53	55	63
Knowledge	57	59	61	60	60
Technology	52	54	55	58	67
Future readiness	41	44	44	46	59

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

► Overall Top Strengths

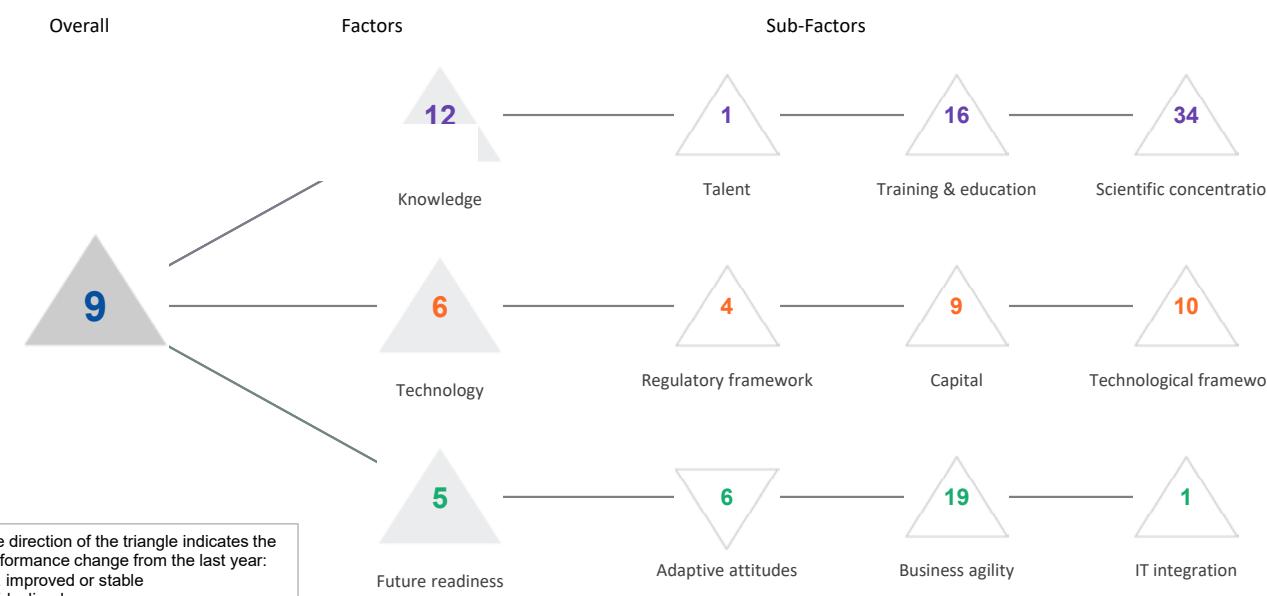
▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	49	47	51	51	64
Training & education	63	63	63	64	64
Scientific concentration	41	41	41	45	37

Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	37	▷ Employee training	68	Total expenditure on R&D (%)	30
International experience	63	Total public expenditure on education	42	Total R&D personnel per capita	41
Management of cities	62	Higher education achievement	36	► R&D productivity by publication	13
Digital/Technological skills	57	Pupil-teacher ratio (tertiary education)	61	High-tech patent grants	53
Foreign highly skilled personnel	67	Graduates in Sciences	53	AI-related patent publications	24
Net flow of international students	25	Women with degrees	50	Robots in Education and R&D	30
Female researchers	32	Computer science education index	30	▷ AI articles	69
Scientific and technical employment	44				

TECHNOLOGY

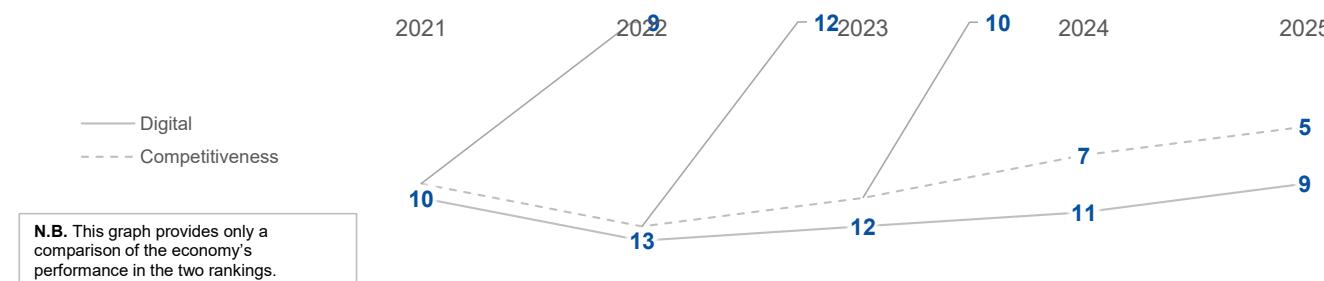

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	41	44	40	37	63
Capital	60	60	60	63	67
Technological framework	48	52	53	56	62
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	35	IT & media stock market capitalization	50	Communications technology	58
► Enforcing contracts	20	Funding for technological development	66	Mobile broadband subscribers	67
Immigration laws	38	Banking and financial services	67	Wireless broadband	58
Development & application of tech.	64	Country credit rating	62	Internet users	49
Scientific research legislation	66	Venture capital	66	Internet bandwidth speed	57
▷ Intellectual property rights	67	Investment in Telecommunications	37	High-tech exports (%)	58
AI policies passed into law	40	AI private investment	17	Secure internet servers	41

FUTURE READINESS

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	34	42	40	46	60
Business agility	29	42	35	46	67
IT integration	47	54	55	49	52

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
► E-Participation	19	Opportunities and threats	63	E-Government	25
Internet retailing	44	World robots distribution	17	Public-private partnerships	53
Tablet possession	51	Agility of companies	67	Cyber security	62
► Smartphone possession	24	▷ Use of big data and analytics	68	Software piracy	49
Attitudes toward globalization	67	▷ Knowledge transfer	68	Government cyber security capacity	40
Flexibility and adaptability	57	► Entrepreneurial fear of failure	09	Privacy protection by law exists	42

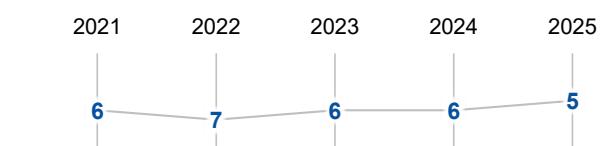
OVERALL PERFORMANCE (69 economies)

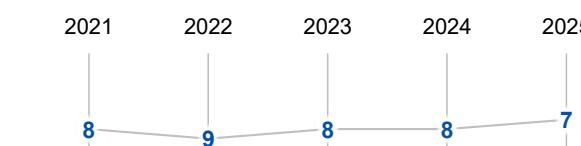


The direction of the triangle indicates the performance change from the last year:
 △ improved or stable
 ▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	10	13	12	11	09
Knowledge	18	15	17	14	12
Technology	05	03	04	09	06
Future readiness	12	20	23	12	05


COMPETITIVENESS & DIGITAL RANKINGS


N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

EUROPE - MIDDLE EAST - AFRICA (45 economies)

POPULATIONS < 20 MILLION (37 economies)

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	01	01	01	02	01
Training & education	25	22	25	29	16
Scientific concentration	52	46	51	41	34

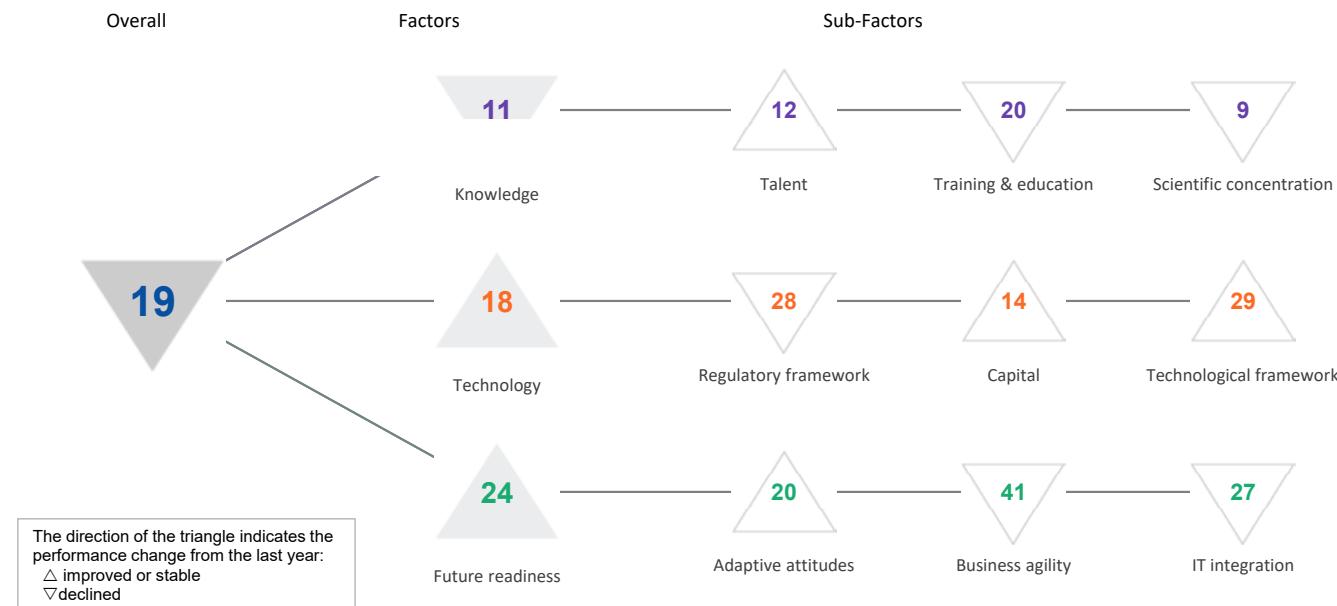
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	38	Employee training	26	Total expenditure on R&D (%)	34
► International experience	01	▷ Total public expenditure on education	51	Total R&D personnel per capita	39
Management of cities	04	Higher education achievement	18	R&D productivity by publication	43
► Digital/Technological skills	01	Pupil-teacher ratio (tertiary education)	42	High-tech patent grants	22
Foreign highly skilled personnel	02	Graduates in Sciences	03	AI-related patent publications	32
► Net flow of international students	01	Women with degrees	03	Robots in Education and R&D	42
Female researchers	40	Computer science education index	23	AI articles	18
Scientific and technical employment	35				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	02	03	08	14	04
Capital	11	10	17	10	09
Technological framework	05	03	03	11	10

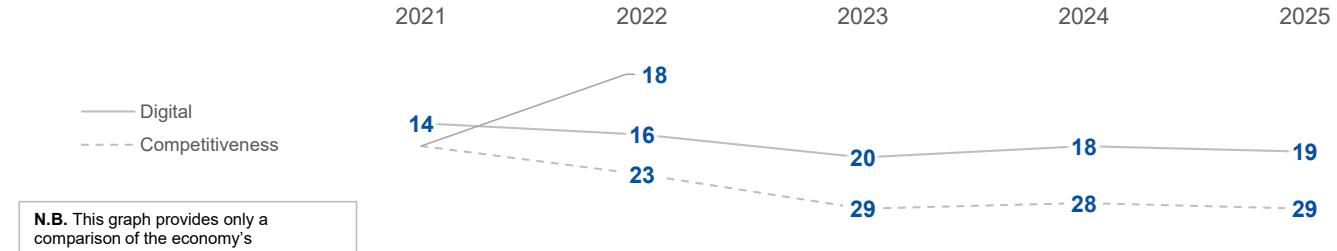
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	08	IT & media stock market capitalization	35	Communications technology	09
Enforcing contracts	09	Funding for technological development	05	Mobile broadband subscribers	49
Immigration laws	02	Banking and financial services	11	► Wireless broadband	01
Development & application of tech.	03	Country credit rating	20	Internet users	01
Scientific research legislation	16	Venture capital	01	Internet bandwidth speed	18
Intellectual property rights	24	▷ Investment in Telecommunications	52	High-tech exports (%)	47
▷ AI policies passed into law	57	AI private investment	08	▷ Secure internet servers	51

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	15	16	14	05	06
Business agility	10	26	31	21	19
IT integration	10	24	26	13	01

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	32	Opportunities and threats	11	E-Government	11
Internet retailing	27	▷ World robots distribution	49	► Public-private partnerships	01
Tablet possession	01	Agility of companies	10	Cyber security	06
Smartphone possession	14	Use of big data and analytics	27	Software piracy	19
Attitudes toward globalization	12	Knowledge transfer	13	Government cyber security capacity	14
Flexibility and adaptability	08	Entrepreneurial fear of failure	36	Privacy protection by law exists	40

UNITED KINGDOM


DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years	2021	2022	2023	2024	2025
OVERALL	14	16	20	18	19
Knowledge	13	12	13	10	11
Technology	17	25	29	21	18
Future readiness	13	16	18	25	24

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

UNITED KINGDOM

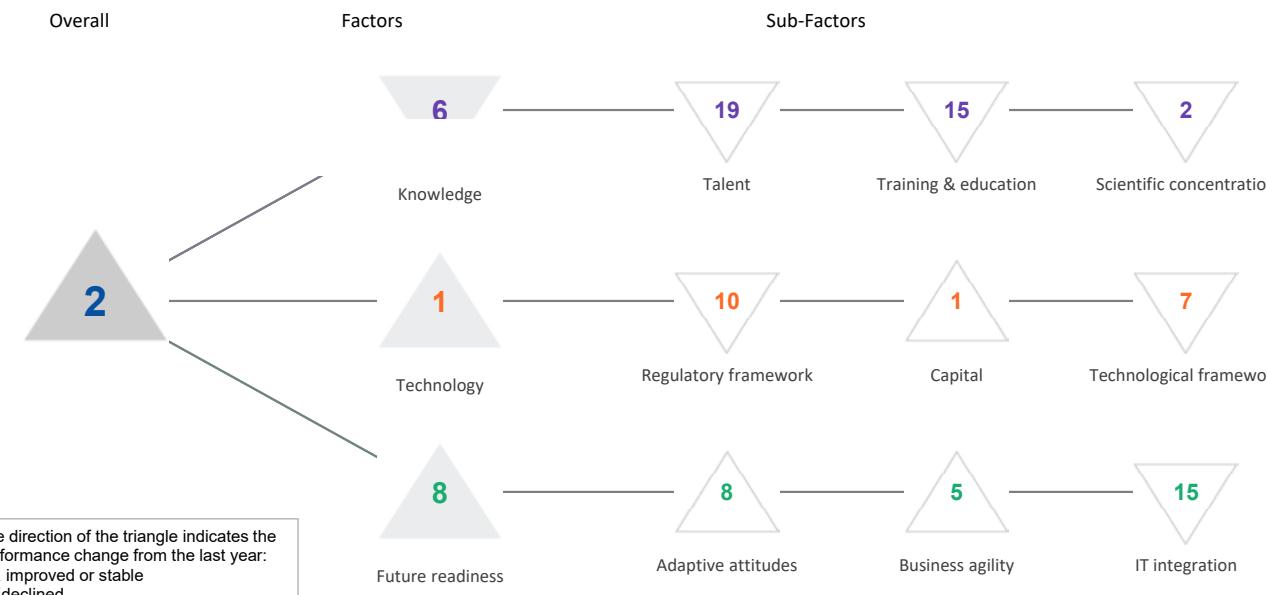
FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	11	15	18	17	12
Training & education	26	19	27	16	20
Scientific concentration	07	06	06	05	09
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	12	Employee training	48	Total expenditure on R&D (%)	12
International experience	34	Total public expenditure on education	31	Total R&D personnel per capita	26
Management of cities	35	Higher education achievement	11	R&D productivity by publication	12
Digital/Technological skills	33	Pupil-teacher ratio (tertiary education)	29	High-tech patent grants	14
Foreign highly skilled personnel	19	Graduates in Sciences	34	AI-related patent publications	06
► Net flow of international students	03	Women with degrees	14	Robots in Education and R&D	08
Female researchers	25	► Computer science education index	02	AI articles	19
► Scientific and technical employment	04				

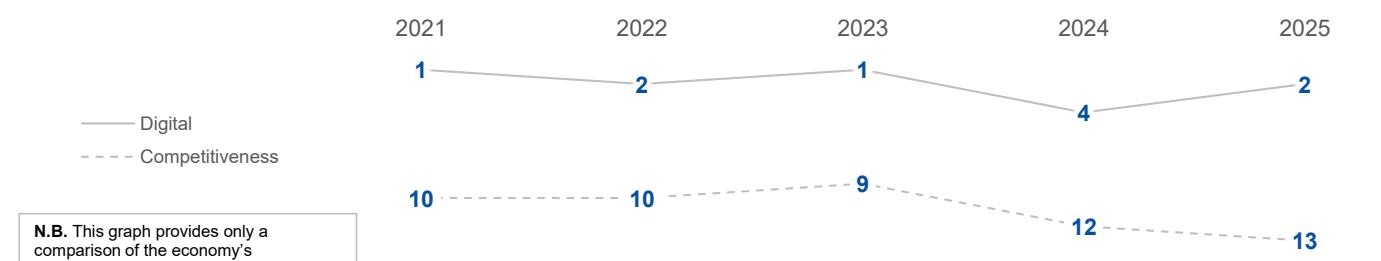

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	20	24	30	17	28
Capital	18	28	31	27	14
Technological framework	19	29	32	29	29
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	09	IT & media stock market capitalization	34	Communications technology	47
Enforcing contracts	26	Funding for technological development	17	Mobile broadband subscribers	25
Immigration laws	44	Banking and financial services	21	Wireless broadband	25
Development & application of tech.	30	Country credit rating	21	Internet users	16
Scientific research legislation	33	Venture capital	21	Internet bandwidth speed	36
Intellectual property rights	36	► Investment in Telecommunications	56	High-tech exports (%)	13
AI policies passed into law	05	AI private investment	03	Secure internet servers	22

FUTURE READINESS

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	09	10	07	22	20
Business agility	23	28	36	31	41
IT integration	09	16	20	21	27
Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
► E-Participation	03	Opportunities and threats	48	E-Government	07
► Internet retailing	03	World robots distribution	15	Public-private partnerships	36
Tablet possession	18	Agility of companies	43	Cyber security	38
► Smartphone possession	50	Use of big data and analytics	28	Software piracy	10
Attitudes toward globalization	53	Knowledge transfer	20	Government cyber security capacity	31
► Flexibility and adaptability	55	Entrepreneurial fear of failure	46	► Privacy protection by law exists	51

OVERALL PERFORMANCE (69 economies)



The direction of the triangle indicates the performance change from the last year:
△ improved or stable
▽ declined

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	01	02	01	04	02
Knowledge	03	04	02	04	06
Technology	04	09	06	02	01
Future readiness	01	03	02	08	08

COMPETITIVENESS & DIGITAL RANKINGS

N.B. This graph provides only a comparison of the economy's performance in the two rankings.

PEER GROUPS RANKINGS

THE AMERICAS (10 economies)

POPULATIONS > 20 MILLION (32 economies)

► Overall Top Strengths ▷ Overall Top Weaknesses

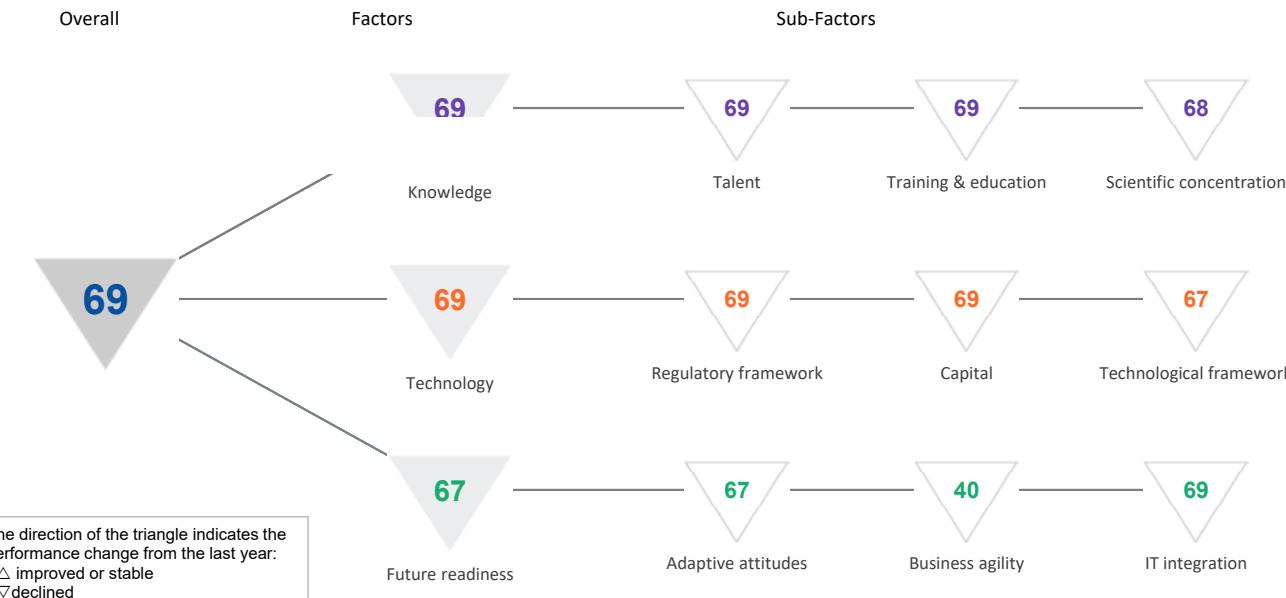
KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	13	14	12	13	19
Training & education	24	23	20	09	15
Scientific concentration	02	01	01	01	02
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	33	Employee training	39	Total expenditure on R&D (%)	05
▷ International experience	44	Total public expenditure on education	14	Total R&D personnel per capita	18
Management of cities	25	Higher education achievement	23	R&D productivity by publication	05
Digital/Technological skills	23	Pupil-teacher ratio (tertiary education)	17	High-tech patent grants	05
Foreign highly skilled personnel	13	Graduates in Sciences	40	▷ AI-related patent publications	02
Net flow of international students	22	Women with degrees	20	Robots in Education and R&D	02
Female researchers	-	► Computer science education index	01	AI articles	36
Scientific and technical employment	20				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	12	12	12	03	10
Capital	01	02	01	02	01
Technological framework	09	13	09	05	07
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	29	IT & media stock market capitalization	05	Communications technology	36
Enforcing contracts	16	Funding for technological development	06	Mobile broadband subscribers	28
▷ Immigration laws	64	Banking and financial services	15	Wireless broadband	09
Development & application of tech.	20	Country credit rating	12	Internet users	29
Scientific research legislation	19	Venture capital	04	Internet bandwidth speed	08
Intellectual property rights	22	Investment in Telecommunications	35	High-tech exports (%)	20
▷ AI policies passed into law	01	AI private investment	01	Secure internet servers	04

FUTURE READINESS


Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	01	04	02	18	08
Business agility	01	04	02	06	05
IT integration	03	10	09	12	15

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	10	Opportunities and threats	32	E-Government	19
▷ Internet retailing	01	World robots distribution	04	Public-private partnerships	33
Tablet possession	15	Agility of companies	17	Cyber security	33
Smartphone possession	42	Use of big data and analytics	10	▷ Software piracy	01
▷ Attitudes toward globalization	61	Knowledge transfer	09	Government cyber security capacity	16
Flexibility and adaptability	44	Entrepreneurial fear of failure	17	▷ Privacy protection by law exists	46

VENEZUELA

DIGITAL TRENDS - OVERALL

OVERALL PERFORMANCE (69 economies)

OVERALL & FACTORS - 5 years

	2021	2022	2023	2024	2025
OVERALL	64	63	64	67	69
Knowledge	61	63	64	67	69
Technology	64	63	64	67	69
Future readiness	64	63	64	66	67

COMPETITIVENESS & DIGITAL RANKINGS

PEER GROUPS RANKINGS

THE AMERICAS (10 economies)

POPULATIONS > 20 MILLION (32 economies)

VENEZUELA

FACTORS BREAKDOWN - STRENGTHS AND WEAKNESSES

► Overall Top Strengths

▷ Overall Top Weaknesses

KNOWLEDGE

Sub-Factors	2021	2022	2023	2024	2025
Talent	64	63	62	67	69
Training & education	52	60	64	67	69
Scientific concentration	49	47	45	56	68
Talent	Rank	Training & education	Rank	Scientific concentration	Rank
Educational assessment PISA - Math	56	Employee training	62	Total expenditure on R&D (%)	-
International experience	68	Total public expenditure on education	67	Total R&D personnel per capita	-
▷ Management of cities	69	Higher education achievement	-	R&D productivity by publication	-
Digital/Technological skills	69	Pupil-teacher ratio (tertiary education)	-	High-tech patent grants	60
Foreign highly skilled personnel	69	Graduates in Sciences	-	AI-related patent publications	52
Net flow of international students	-	Women with degrees	-	Robots in Education and R&D	53
► Female researchers	07	Computer science education index	60	AI articles	66
Scientific and technical employment	-				

TECHNOLOGY

Sub-Factors	2021	2022	2023	2024	2025
Regulatory framework	64	63	64	67	69
Capital	64	63	64	67	69
Technological framework	63	63	64	66	67
Regulatory framework	Rank	Capital	Rank	Technological framework	Rank
Starting a business	67	IT & media stock market capitalization	-	Communications technology	69
Enforcing contracts	65	▷ Funding for technological development	69	Mobile broadband subscribers	67
Immigration laws	49	▷ Banking and financial services	69	▷ Wireless broadband	69
Development & application of tech.	67	Country credit rating	68	Internet users	-
Scientific research legislation	69	▷ Venture capital	69	Internet bandwidth speed	61
Intellectual property rights	69	Investment in Telecommunications	67	High-tech exports (%)	-
AI policies passed into law	60	AI private investment	-	Secure internet servers	66

FUTURE READINESS

Sub-Factors	2021	2022	2023	2024	2025
Adaptive attitudes	64	63	64	65	67
Business agility	52	55	44	35	40
IT integration	64	63	64	67	69

Adaptive attitudes	Rank	Business agility	Rank	IT integration	Rank
E-Participation	66	► Opportunities and threats	15	E-Government	65
Internet retailing	-	World robots distribution	56	Public-private partnerships	60
Tablet possession	44	Agility of companies	50	Cyber security	68
Smartphone possession	63	Use of big data and analytics	44	Software piracy	66
Attitudes toward globalization	43	Knowledge transfer	62	Government cyber security capacity	47
► Flexibility and adaptability	15	► Entrepreneurial fear of failure	05	Privacy protection by law exists	67

Appendices

114

Notes and Sources by Criteria

The source of the survey criteria is:

IMD World Competitiveness Center's Executive Opinion Survey 2025
which was conducted from March-May 2025, with a total number
of 6,162 responses used in the construction of the ranking.

Standard notes used in the data tables

When statistical data is not available or is too out-dated to be relevant for a particular economy, the name appears at the bottom of the statistical table and a dash is shown. When the data is older than the reference year, the year of the data is shown next to the criterion value.

Exchange rate	As most data are expressed in U.S. dollars, you will find the exchange rates used at the beginning of the Statistical Tables. The sources for the Exchange Rates are International Financial Statistics Online (IMF) and national sources.
Per capita	For all information presented “per capita” the sources for the population are Passport GMID (Euromonitor) and national sources.
% of GDP	For all information presented as a “percentage of GDP” the sources for GDP are the OECD Main Economic Indicators and national sources.
[B]	The criteria is a background criteria. They are not taken into consideration when constructing the rankings and provided for information only.

Background

0.0.1 [B] Exchange rate

IMF International Financial Statistics
IMF World Economic Outlook April 2025

Period average.

0.0.2 [B] Population - market size

IMF World Economic Outlook April 2025
National sources

Mid-year estimates. Brazil, Bulgaria, Saudi Arabia: break in series in 2023. Croatia: new census in 2011 with a new methodology. India: break in series in 2011. Iceland, Romania as of January 1. Jordan: series have been revised according to the new Population and Housing Census published in 2016. End of year population for 2019 and 2020. Lithuania: break in series 2011-census revised population figure downwards by 10% (emigration to EU over past decade). Philippines: Projected population (medium assumption) excluding for 2015, which is based on the 2015 Census. Portugal: methodological change in 2011. Russia: including Crimea as of 2015. UAE: re-estimation of the national population was made by the National Bureau of Statistics in 2010 (consequent increase as of 2008).

0.0.3 [B] GDP per capita

OECD Annual GDP and components
National sources

Provisional data or estimates for most recent year. Malaysia: Data for 2023 is sum of 4 quarters. Taiwan (Chinese Taipei): Data 2021 and 2022 are revised according to the annual revisions released by DGBAS in November 2023, 2023 is the latest preliminary estimate in February 2024.

Notes and Sources by Criteria

Knowledge

Talent

1.1.1 Educational assessment PISA - Math

PISA (OECD)
<http://www.oecd.org/pisa/>

The OECD's Programme for International Student Assessment (PISA) is a regular survey of 15-year olds which assesses aspects of their preparedness for adult life. PISA selects a sample of students that represents the full population of 15-year-old students in each participating country or education system, in both public and private schools. Mathematical literacy: an individual's capacity to identify and understand the role that mathematics plays in the world, to make well-founded judgments and to use and engage with mathematics in ways that meet the needs of that individual's life as a constructive, concerned and reflective citizen. Scientific literacy: an individual's scientific knowledge and use of that knowledge to identify questions, to acquire new knowledge, to explain scientific phenomena, and to draw evidence based conclusions about science-related issues, understanding of the characteristic features of science as a form of human knowledge and enquiry, awareness of how science and technology shape our material, intellectual, and cultural environments, and willingness to engage in science-related issues, and with the ideas of science, as a reflective citizen. Hong Kong SAR, Netherlands, Portugal and United States: Data did not meet the PISA technical standards but were accepted as largely comparable. China: limited regions (B-S-J-Z); the municipalities of Beijing and Shanghai and the provinces of Jiangsu and Zhejiang participated.

1.1.6 Net flow of international students

UNESCO
National sources

Net flow of internationally mobile students (inbound from abroad studying in a given country minus outbound from a given country), both sexes, in tertiary education. Data can refer to the school or financial year prior or after the reference year.

1.1.7 Female researchers

UNESCO
OECD Main Science and Technology Indicators, OECD Science, Technology and R&D Statistics (database)

Female researchers (headcount) who are mainly or partially employed in R&D. This includes staff employed both full-time and part-time. Expressed as a percentage of the total workforce (male + female)

1.1.8 Scientific and technical employment

Eurostat
OECD "Labour Force Statistics: Employment by activities and status"
OECD Employment and Labour Market Statistics
ILOSTAT
National sources

Scientific and technical employment as a % of total employment. Defined as formal employment within the 'scientific and technical' sector. For more information, refer to NACE2 category M (or equivalent). Philippines: 2020 data are preliminary figures for October 2020.

Training & education

1.2.2 Total public expenditure on education

IMF Government Finance Statistics
Eurostat
UNESCO
National sources

Total general (local, regional and central) government expenditure in educational institutions (current and capital). It excludes transfers to private entities such as subsidies to households and students, but includes expenditure funded by transfers from international sources to government. It includes pre-primary, primary, secondary all levels and tertiary public institutions. Chile and Jordan: Budgetary central government. Philippines: Total disbursements to the Department of Education and State Colleges and Universities.

1.2.3 Higher education achievement

OECD Education at a Glance
National sources

Percentage of the population aged 25-34 that has attained tertiary-type B and tertiary-type A and advance research programs. Tertiary-type A education covers more theoretical programs that give access to advanced research programs and to professions with high general skills requirements. Tertiary-type B education covers more practical or occupationally specific programs that provide participants with a qualification of immediate relevance to the labor market. Hong Kong SAR: Figures starting from 2012 exclude post-secondary diploma or certificate and exclude foreign domestic helpers. Kazakhstan: The data were reviewed taking into account the inclusion of graduates in technical and vocational education organizations (MCKO-5). New-Zealand and Slovenia: break in series. Peru: Tertiary education type A refers to University tertiary level and tertiary education type B refers to Non-university tertiary level; for 25 years and more. Singapore: proportion of resident non-students aged 25-34 years with polytechnic, professional qualification or other diploma, or university qualification. Japan: Data for tertiary education include upper secondary or post-secondary non-tertiary programmes (less than 5% of adults are in this group).

1.2.4 Pupil-teacher ratio (tertiary education)

UNESCO
National sources

Average number of pupils per teacher at a given level of education, based on headcounts of both pupils and teachers. Tertiary education (ISCED levels 5 to 8). Tertiary education builds on secondary education, providing learning activities in specialised fields of education. It aims at learning at a high level of complexity and specialisation. Tertiary education includes what is commonly understood as academic education but also includes advanced vocational or professional education. Czech Republic, France, Ireland and Poland: based on full-time equivalents. Philippines: Academic Year 2017-2018 data. Data includes students and faculty from both public and private tertiary educational institutions.

Notes and Sources by Criteria

1.2.5	Graduates in Sciences OECD Education at a Glance UNESCO Share of graduates in Natural Sciences; Mathematics and Statistics; Information and Communication technologies; Engineering, manufacturing and construction. In tertiary education (ISCED2011 levels 5 to 8), both sexes (%). Japan: Data on information and communication technologies are included in other fields. Jordan: 2020 data used in 2019. Philippines: includes Medical and Allied Disciplines Graduates.	1.3.3	R&D productivity by publication NSF Science & Engineering Indicators Courtesy: National Science Foundation National sources The indicator is calculated as a ratio between the number of scientific articles by author's origin and the total expenditure in R&D as % GDP, which clearly include the input costs to produce research (e.g. researchers' salaries, equipment etc.). The result gives therefore the number of scientific articles published every year for a one percent (of GDP) expenditure in R&D activities. This measure can be considered as a proxy to assess the efficiency (or productivity) in producing high-level scientific research at country level.
1.2.6	Women with degrees OECD Education at a Glance National sources Educational attainment in tertiary education of 25-64 year-old females expressed as a percentage of the female population 25-64. In most countries data refer to ISCED 2011 (codes 5/6/7/8). Japan: includes data from another category. Kazakhstan: Share of women with tertiary level degree (age 25-44).	1.3.4	High-tech patent grants WIPO Statistics Database TIPO for Taiwan (Chinese Taipei) High-Tech patent grants as a percentage of total patent grants (Direct and PCT national phase entries) by applicant's origin. Three year average to reduce volatility. Counts are based on the grant date. Country of origin refers to the country of residency of the first-named applicant in the application. Taiwan (Chinese Taipei): data compiled by TIPO using data supplied by international patent offices (USPTO, JPO, EPO, KIPO, SIPO).
1.2.7	Computer science education index World University Ranking, Times Higher Education IMD WCC developed index calculated from the Times Higher Education ranking of the top 1'000 university computer science courses, measuring the quantity and quality of the universities in each economy. 33% weighting is the number of universities in THES ranking for each country, 33% weighting is the total score, 33% weighting is the total score per capita.	1.3.5	AI-related patent publications WIPO Statistics Database AI-related patent publications. (Direct and PCT national phase entries) by applicant's origin. Three year average to reduce volatility. Country of origin refers to the country of residency of the first-named applicant in the application.
	Scientific concentration		
1.3.1	Total expenditure on R&D (%) OECD Main Science and Technology Indicators UNESCO National sources National estimates, projections or provisional data for the most recent year. Chile, Denmark, France, Japan, Korea, Netherlands, Portugal, Slovenia, Spain and Sweden: break in series. Hungary (up to 2003), Israel: defense excluded(all or mostly). Indonesia: Estimate based on target GERD by the Ministry of Science and Technology. Sweden: underestimated or based on underestimated data. USA: excludes most or all capital expenditure.	1.3.6	Robots in Education and R&D World Robotics International Federation of Robotics (IFR) Industrial robot as defined by ISO 8373:2012: an automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes, which can be either fixed in place or mobile for use in industrial automation applications. The primary source is data on robot installations by country, industry and application that nearly all industrial robot suppliers worldwide report to the IFR Statistical Department directly. Several national robot associations collect data on their national robot markets and provide their results as secondary data to the IFR. This data is used to validate and complete the IFR primary data.
1.3.2	Total R&D personnel per capita OECD Main Science and Technology Indicators UNESCO National sources National estimates, projections or provisional data for most recent year. Czech Republic, Colombia, Denmark, Finland, Korea, Mexico, Netherlands, Hungary, Japan, Portugal, Slovenia, Sweden and Taiwan (Chinese Taipei): break in series. Mongolia: Total number of employees in science sector. United Kingdom: underestimated or based on underestimated data. Jordan, Philippines: based on headcount, not FTE.		IFR Statistical Departments estimates the operational stock assuming an average service life of 12 years with an immediate withdrawal from service afterwards.
		1.3.7	AI articles Scopus Annual count of the number of articles in Scopus using the keyword artificial intelligence, by author's institution, per capita.

Technology

Regulatory framework

2.1.1 Starting a business

Doing Business 2020 -World Bank

The distance to frontier score aids in assessing the absolute level of regulatory performance and how it improves over time. This measure shows the distance of each economy to the “frontier,” which represents the best performance observed on each of the indicators across all economies in the Doing Business sample since 2005. This allows users both to see the gap between a particular economy’s performance and the best performance at any point in time and to assess the absolute change in the economy’s regulatory environment over time as measured by Doing Business. An economy’s distance to frontier is reflected on a scale from 0 to 100, where 0 represents the lowest performance and 100 represents the frontier. For example, a score of 75 in DB 2016 means an economy was 25 percentage points away from the frontier constructed from the best performances across all economies and across time. A score of 80 in DB 2017 would indicate the economy is improving. In this way the distance to frontier measure complements the annual ease of doing business ranking, which compares economies with one another at a point in time.

2.1.2 Enforcing contracts

Doing Business 2020 -World Bank

The distance to frontier score aids in assessing the absolute level of regulatory performance and how it improves over time. This measure shows the distance of each economy to the “frontier,” which represents the best performance observed on each of the indicators across all economies in the Doing Business sample since 2005. This allows users both to see the gap between a particular economy’s performance and the best performance at any point in time and to assess the absolute change in the economy’s regulatory environment over time as measured by Doing Business. An economy’s distance to frontier is reflected on a scale from 0 to 100, where 0 represents the lowest performance and 100 represents the frontier. For example, a score of 75 in DB 2016 means an economy was 25 percentage points away from the frontier constructed from the best performances across all economies and across time. A score of 80 in DB 2017 would indicate the economy is improving. In this way the distance to frontier measure complements the annual ease of doing business ranking, which compares economies with one another at a point in time.

2.1.7 AI policies passed into law

Digital Policy Alert

Cumulative count of AI related bills passed into law.

Capital

2.2.1 IT & media stock market capitalization

Refinitiv -used to be Thomson Reuters -Thomson One banker

Datastream Telecom, Media and IT (TMT) Market Value in national currency. Calculated as a percentage of Datastream Total Market Value in national currency. Figures for close-of-business on the 29th March each year.

2.2.4 Country credit rating

Fitch, Moody’s and S&P

IMD WCC created index of the three country credit ratings Fitch, Moody’s and S&P. Each rating, including the outlook, is converted to a numerical score from 20-0 and totalled for each country.

2.2.6 Investment in Telecommunications

Passport, Source: © Euromonitor International
National sources

Investment refers to as the annual capital expenditure; this is the gross annual investment in telecom (including fixed, mobile and other services) for acquiring property and network. The term investment means the expenditure associated with acquiring the ownership of property (including intellectual and non-tangible property such as computer software) and plant. This includes expenditure on initial installations and on additions to existing installations where the usage is expected to be over an extended period of time. Note that this applies to telecom services that are available to the public, and exclude investment in telecom software or equipment for private use.

2.2.7 AI private investment

Quid via Stanford AI Index Report

Annual private investment in artificial intelligence. Includes companies that received more than \$1.5 million in investment. This data is expressed in US dollars.

Technological framework

2.3.2 Mobile broadband subscribers

Fitch Solutions -used to be Business Monitor International

Total active mobile 5G subscriptions, excluding broadband connections on dedicated data SIM cards or USB dongles. Data given as a percentage of the total mobile market.

Notes and Sources by Criteria

2.3.3 Wireless broadband

Passport, Source: © Euromonitor International

The penetration rates of wireless broadband is calculated by dividing the number of Wireless Broadband subscribers by the total population and multiplying by 100. Wireless-broadband subscriptions refer to the sum of satellite broadband, terrestrial fixed wireless broadband and active mobile-broadband subscriptions to the public Internet. The indicator refers to total active wireless-broadband Internet subscriptions using satellite, terrestrial fixed wireless or terrestrial mobile connections. Broadband subscriptions are those with an advertised download speed of at least 256 kbit/s. In the case of mobile-broadband, only active subscriptions are included (those with at least one access to the Internet in the last three months or with a dedicated data plan). The service can be standalone with a data card, or an add-on service to a voice plan. The indicator does not cover fixed (wired)-broadband or Wi-Fi subscriptions. Both residential and business subscriptions should be included.

2.3.4 Internet users

World Development Indicators (World Bank)
National sources

Average of available sources

2.3.5 Internet bandwidth speed

Broadband Speed League
Ookla
SpeedTest Pro

Average connection speed in Mbps: data transfer rates for Internet access by end-users. Values presented are an average compiled from three different sources: Broadband Speed League (Jun. 2024); Ookla (Jan. 2025); and SpeedTest Pro (Feb. 2023)

2.3.6 High-tech exports (%)

World Development Indicators (World Bank)
National sources

High-technology exports are products with high R&D intensity, such as in aerospace, computers, pharmaceuticals, scientific instruments, and electrical machinery.

2.3.7 Secure internet servers

Netcraft (<http://www.netcraft.com/>) and World Bank population estimates.
publicly-trusted TLS/SSL certificates, Netcraft Secure Server Survey

Future readiness

Adaptive attitudes

3.1.1 E-Participation

UN E-Government Knowledge Database

The e-participation index (EPI) measures the use of online services to facilitate provision of information by governments to citizens (“e-information sharing”), interaction with stakeholders (“e-consultation”), and engagement in decision-making processes (“e-decision making”).

3.1.2 Internet retailing

Passport, Source: © Euromonitor International
National sources

Retail Value excluding sales tax. Iceland Based on data from Centre for Retail Studies Iceland. Total turnover in online retail with Icelandic cards.

3.1.3 Tablet possession

Passport, Source: © Euromonitor International

Percentage of households having at least one item. Portable, usually battery-powered, and very thin personal computer contained with a touchscreen panel.

3.1.4 Smartphone possession

Passport, Source: © Euromonitor International
National sources

Percentage of households having at least one item. A smartphone is a cellular telephone with an integrated computer and other features not originally associated with telephones, such as an operating system, Web browsing, music and movie player, camera and camcorder, GPS navigation, voice dictation for messaging, the ability to run software applications, etc.

Notes and Sources by Criteria

Business agility

3.2.2 World robots distribution

World Robotics
International Federation of Robotics (IFR)

Industrial robot as defined by ISO 8373:2012: an automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes, which can be either fixed in place or mobile for use in industrial automation applications.

The primary source is data on robot installations by country, industry and application that nearly all industrial robot suppliers worldwide report to the IFR Statistical Department directly. Several national robot associations collect data on their national robot markets and provide their results as secondary data to the IFR. This data is used to validate and complete the IFR primary data.

IFR Statistical Departments estimates the operational stock assuming an average service life of 12 years with an immediate withdrawal from service afterwards.

3.2.6 Entrepreneurial fear of failure

Global Entrepreneurship Monitor

Percentage of 18-64 population perceiving good opportunities to start a business who indicate that fear of failure would prevent them from setting up a business.

IT integration

3.3.1 E-Government

UN E-Government Knowledge Database

The E-Government Development Index presents the state of E-Government Development of the United Nations Member States. Along with an assessment of the website development patterns in a country, the E-Government Development index incorporates the access characteristics, such as the infrastructure and educational levels, to reflect how a country is using information technologies to promote access and inclusion of its people. The EGDI is a composite measure of three important dimensions of e-government, namely: provision of online services, telecommunication connectivity and human capacity.

3.3.4 Software piracy

BSA Global Software Survey

The BSA Global Software Survey calculates unlicensed installations of software that runs on PCs – including desktops, laptops, and ultra-portables, such as netbooks. A key component of the BSA Global Software Survey is a global survey of more than 20,000 home and enterprise PC users, conducted by IDC. In addition, a parallel survey was carried out among 2,200 IT managers in 22 countries. Please consult the original report for a more detailed explanation of the methodology.

3.3.5 Government cyber security capacity

Varieties of Democracy (V-Dem)

Digital Society Project

Does the government have sufficiently technologically skilled staff and resources to mitigate harm from cyber-security threats?

- 0: No. The government does not have the capacity to counter even unsophisticated cyber security threats.
- 1: Not really. The government has the resources to combat only unsophisticated cyber attacks.
- 2: Somewhat. The government has the resources to combat moderately sophisticated cyber attacks.
- 3: Mostly. The government has the resources to combat most sophisticated cyber attacks.
- 4: Yes. The government has the resources to combat sophisticated cyber attacks, even those launched by highly skilled actors.

3.3.6 Privacy protection by law exists

Digital society project

Question: Does a legal framework to protect Internet users' privacy and their data exist?

Responses: 0: No. 1: Yes

Index to Criteria

The first number indicates the Competitiveness Factor, the second number indicates the sub-factor and the third number indicates the criterion number.

A

Agility of companies.....	3.2.1-3.2.3
Attitudes toward globalization.....	3.1.5
Adaptability, and flexibility.....	3.1.6
AI articles.....	1.3.8
AI policies.....	2.1.7

B

Banking and financial services.....	2.2.3
Big data.....	3.2.4
Broadband.....	2.3.2-2.3.3

C

Capital.....	2.2.1-2.2.6
City, management.....	1.1.4
Communications technology.....	2.3.1
Company agility.....	3.2.1-3.2.3
Computer penetration.....	3.1.1-3.1.5
Computer science education.....	1.2.7
Cyber security.....	3.3.3, 3.3.5
Credit Rating.....	2.2.4

D

Degrees,	1.2.5-1.2.6
Digital/Technological skills	1.1.5

E

Education.....	1.2.1-1.2.6
Educational assessment PISA - Math.....	1.1.1
Education, computer science	1.2.7
E-Government	3.3.1
Employee training	1.2.1
Enforcing contracts	2.1.2
Entrepreneurship (fear of failure)	3.2.6
E-Participation.....	3.1.1
Exports, High-tech.....	2.3.6

F

Fear of failure (entrepreneurship).....	3.2.6
Female researchers.....	1.3.3
Flexibility and adaptability	3.1.6
Foreign highly-skilled personnel.....	1.1.3
Funding for technological development.....	2.2.2

G

Globalization, attitudes towards	3.1.5
Graduates in Sciences	1.2.5

H

Higher education achievement.....	1.2.3
High-tech exports (%)	2.3.6
High-tech patent grants.....	1.3.6

I

Immigration laws.....	2.1.3
Innovative firms	3.2.2
Intellectual property rights.....	2.1.6
International experience.....	1.1.2
Internet	2.3.1-2.3.6
Internet bandwidth speed	2.3.5
Internet retailing	3.1.2
Internet servers	2.3.7
Internet users	2.3.4
Investment.....	2.2.1-2.2.6
Investment in Telecommunications	2.2.6
Investment risk.....	2.2.4
IT & media stock market capitalization	2.2.1
IT penetration	3.1.1-3.1.5
IT, digital skills.....	1.1.5

K-L

Knowledge transfer.....	3.2.5
Legislation.....	2.1.1-2.1.6

M

Management of cities.....	1.1.4
Mobile Broadband subscribers.....	2.3.2

N-O

Net flow of international students	1.1.6
Opportunities and threats	3.2.1

P

Piracy	3.3.4
Privacy	3.3.6
Public-private partnerships	3.3.2
Pupil-teacher ratio (tertiary education)	1.2.4

R

R&D	1.3.1-1.3.6
R&D productivity	1.3.4
Regulations.....	2.1.1-2.1.6
Robotics.....	1.3.7, 3.2.2

S

Scientific and technical employment.....	1.3.5
Scientific research legislation	2.1.5
Secure internet servers.....	2.3.7
Skills.....	1.1.2, 1.1.3, 1.1.5
Smartphone possession.....	3.1.4
Software piracy	3.3.4
Starting a business	2.1.1

T

Tablet possession	3.1.3
Talent	1.1.2, 1.1.3, 1.1.5
Technological regulation	2.1.4
Technology	2.3.1-2.3.6
Total expenditure on R&D (%)	1.3.1
Total public expenditure on education	1.2.2
Total R&D personnel per capita	1.3.2
Training	1.2.1

U-V

Use of big data and analytics	3.2.4
Venture capital	2.2.5

W

Wireless broadband	2.3.3
Women with degrees	1.2.6

Challenging what is and inspiring what could be, we develop leaders who transform organizations for a more prosperous, sustainable, and inclusive world.

About the Institute for Management Development (IMD)

We are an independent academic institute with close ties to business and a strong focus on impact. Through our Executive Education, MBA, Executive MBA, and advisory work we help leaders and policy-makers navigate complexity and change.

We support the transition to a new model that balances prosperity and growth with ecological sustainability and social inclusion.
Sustainability and diversity, equity, and inclusion are in our DNA.

We combine a deep understanding of human dynamics with a pioneering approach to technology and AI. We deliver powerful learning experiences for individuals and teams across the globe.

www.imd.org

IMD / Real learning
Real impact